
THE FUTURE OF DIGITAL TERRAIN

IN

DISTRIBUTED SIMULATIONS

Captain Rodney A. Houser

Joint Advanced Distributed Simulation Joint Test Force
11104MenaulBlvdNE

Albuquerque, New Mexico 87112

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

November 10, 1998

20000619 098
DTIC QUALITY INSPECTED 4 /\ rv-r~ /\/\^S) °/ ßBTDO-ö h 3(^oa

Contents

1.0 Background 1
2.0 Introduction 2
3.0 Methodology 2

3.0.1 Designing the Advanced Radar Imaging and Emulation System 3
3.0.2 Getting the Data 3

3.0.2.1 National Imagery and Mapping Agency Digital Data 4
3.0.2.2 Digitizing 5

3.0.3 Putting the Data into a Standard Form 5
3.0.3.1 Datums 5
3.0.3.2 Map Projections 5
3.0.3.3 Map Scales 5

3.0.4 Manipulating the Data 6
3.0.5 Limitations '. 11

4.0 Lessons Learned 12
5.0 Recommendations 13
6.0 Conclusion 14

Appendices

Appendix A - Feature Identification Codes supported by ARIES 15
Appendix B - Modified DFAD Feature Attributes 17
Appendix C - Digital Data Base ICD for ARIES 18
Appendix D - ARC/INFO® Macro Language Scripts 24
Appendix E- C Code 25
Appendix F - FORTRAN Code 27
Appendix G - PV-WAVE® Procedures 31
Appendix H - Glossary , 39

List of Figures

Figure 1 ARIES System Design 3
Figure 2 Area of Interest - Southwest Asia 4
Figure 3 Converting between ARC/INFO® and DFAD 6
Figure 4 Relationship between DFAD and ARC/INFO® Attributes 7
Figure 5 Terrain Database Development Process 10
Figure 6 Converting to the ARIES format 11

1.0 Background

The key objective of the Joint Advanced Distributed Simulation Joint Test Force (JADS JTF) is
to provide the Test and Evaluation (T&E) community with an evaluation of the utility of
Advanced Distributed Simulation (ADS) as a methodology. The End To End (ETE) test
evaluates the utility of ADS to complement the Developmental Test and Evaluation (DT&E) and
Operational Test and Evaluation (OT&E) of a Command, Control, Communications, Computers,
Intelligence, Surveillance & Reconnaissance (C4ISR) system. The test uses the critical
operational issues for the Joint Surveillance Target Attack Radar System (Joint STARS) to
conduct its T&E utility evaluation in an ADS-enhanced test environment.

The ETE test consists of four phases. The first two phases occur in a laboratory environment,
suited for exploring DT&E and early OT&E applications. Phase 3 checks compatibility of the
ADS environment with the actual Joint STARS equipment, and Phase 4 is a live open-air test
designed to mix live and virtual targets and provide an end-to-end environment for testing Joint
STARS in its operational environment. The intent is to provide a set of interfaces from sensor to
weapon system including some of the intermediate nodes that would be found in a tactical
engagement. The test traces a thread of the battlefield process, from target detection to target
assignment, target engagement, and battle damage assessment at corps level, using ADS. It
allows the tester to evaluate the thread as a whole and to evaluate what effects an operationally
realistic environment has on the system under test. The ETE test is designed to add additional
entities in a seamless manner to the battlefield seen by Joint STARS. In addition, the ETE test
adds, via ADS, some of the complimentary suite of the C4ISR systems and weapons systems with
which Joint STARS interacts. This enables the test team to evaluate the utility of an ADS-
enhanced test environment.

The ETE test uses ADS, as defined by IEEE Standard 1278 for Distributed Interactive Simulation
(DIS), to supplement the operational environment that E-8C and Light Ground Station Module
(LGSM) operators would experience. By mixing any available live targets with targets generated
by a simulation, the ETE synthetic environment presents a battle array that represents many of the
major ground systems found in a corps area of interest. Additionally, by constructing a network
with nodes representing appropriate C4ISR systems and weapon systems, a more robust cross
section of players is available with which the E-8C and LGSM operators can interact.

Several components are required to create the ADS-enhanced operational environment (ETE
synthetic environment) that is used in the ETE test. In addition to Joint STARS, the ETE test
requires Janus, a validated simulation capable of generating thousands of entities that represent
some of the elements in a threat rear area of operation. Also, simulations of the Joint STARS
moving target indicator (MTI) radar and synthetic aperture radar (SAR), collectively called the
Virtual Surveillance Target Attack Radar System (VSTARS), are used to insert the simulated
entities into the radar stream aboard the E-8C. Other components used to support the test include
live elements of the Army's artillery command and control process and the Tactical Army Fire
Support Model (TAFSM), which simulates a Battalion of the Army's Advanced Tactical Missile
System. These simulations begin to interact after an operator starts a scenario in the DIS version
of Janus. As VSTARS processes the simulated entities, the LGSM receives MTI and can request

SAR images. Using doctrinally correct means, a soldier sends free text messages from the
Compartmented All-Source Analysis System Message Processing System to two remote
workstations (RWSs). In turn, a soldier at an Advanced Field Artillery Tactical Data System
(AFATDS) receives Target Intelligence Data messages from the RWSs. The AFATDS operator
sends a fire mission to another AFATDS operating as a Battalion Fire Direction Center. Here,
TAFSM encapsulates the fire and detonation traffic within DIS protocol data units (PDUs) and
broadcasts the PDUs across the ETE synthetic environment. Finally, Janus receives the PDUs,
assesses damage, and continues the end to end loop.

2.0 Introduction

With the rapidly changing environment of distributed testing, one thing must stay constant—
digital terrain. In September 1996, the ETE test team realized that the simulations being
developed to support ADS needed to work from the same terrain database. In order to reduce
the level of effort required to develop digital terrain for the ETE test, the team used the relatively
featureless terrain of Southwest Asia (SWA).

Three of the four simulations (Janus, TAFSM, and the VSTARS MTI) in the ETE synthetic
environment already used National Imagery and Mapping Agency (NIMA) digital data.
Therefore, the ETE team decided to use this terrain data as a basis. The team contracted
Lockheed Martin Tactical Defense Systems (LMTDS) of Litchfield Park, Arizona to design and
build the fourth simulation, a Joint STARS SAR simulation called the Advanced Radar Imaging
Emulation System (ARIES).

From a distributed testing standpoint, it was essential that each simulation represent terrain and
features accurately. Therefore, all four simulations used terrain data derived from Level 1 Digital
Terrain Elevation Data (DTED) and Digital Feature Analysis Data (DFAD). Despite using a
common terrain basis, approximately 90% of the development effort was correcting the data,
adding detail, and putting it into a standard format. This was accomplished by combining the
strengths of Geographic Information System (GIS) software tools such as ArcView® and
ARC/INFO® with the flexibility of PV-WAVE®, and C and FORTRAN code.

The process and standards involved in producing terrain databases needs to change to make it less
time and manpower intensive. This report focuses on the steps used to develop the ETE terrain
database, lessons learned, and what can be done to improve the whole process in the future.

3.0 Methodology

The ETE test team based its testing on a 54-hour Corps Battle Simulation scenario in SWA, used
by TEXCOM Lab for testing C4I systems. This scenario was adapted from the US Army
Command and General Staff College (CGSC) Common Teaching Scenario - Southwest Asia,
dated April, 1992, modified by Headquarters, TRADOC. Not only did the scenario dictate the
entities present in Janus, but it also defined SWA as the area of interest for the ETE terrain
database. Therefore, in order to interact in the ETE synthetic environment, Janus, TAFSM, and

VSTARS required a terrain database of SWA. The following steps highlight the major concepts
used in developing the ETE terrain database.

3.0.1 Designing the Advanced Radar Imaging and Emulation System

ARIES, a component of VSTARS, ultimately defined how the ETE terrain database would be
built. During the ARIES design process, two implementations were considered—a point map and
raster ground truth generation. Figure 1 represents an overview of the final ARIES system
design. As shown below, the point map design was selected. At the time, this design offered
distinct advantages. First, DTED and DFAD data was readily available. Second, the tools to
modify and create new terrain databases were available. Finally, all of the simulations in the ETE
synthetic environment could derive their own proprietary formats from the single terrain database.
Refer to Appendix C for the interface control document (ICD), which defines the characteristics
and structure of the digital terrain elevation and feature database for the ARIES simulation.

OFF-LINE PRE-PROCESSING

OFF-LINE DATA
STORAGE

ARIES
LIBRARY
RELEASES

REAL-TIME
PROCESSING

RPSl

SAR RE QUEST

GROUND
TRUTH
(CSCI-1)

POIN MAP

SARIMAGE
GENERATION

(CSCI-2)

Figure 1 ARIES System Design

3.0.2 Getting the Data

The ETE team obtained terrain data as paper maps and in digital format from NIMA. The
Catalog of Maps, Charts, and Related Products and the Semiannual Bulletin Digest proved to be
invaluable for determining availability of terrain data for SWA. Figure 2, from TEXCOM's The
Road to War, shows the area of interest for ETE terrain database development.

Former Marshes and Water Diversion
Projects in Southeastern Iraq, June 1994

Marsh

 Flooded Area
 Existing Canal

Road

Approx Scale: 1:2,100,000

20 30 *p KIOITMtMl

10 20 30 «W

Figure 2 Area of Interest - Southwest Asia

3.0.2.1 National Imagery and Mapping Agency Digital Data

Level 1 DTED and DFAD can be obtained on CD-ROM from the National Imagery and Mapping
Agency, 3200 S. Second St., St. Louis, MO 63118. The request should indicate full one-degree
geographic cells of data by either southwest corner coordinates, or by delineating the required
area.

3.0.2.2 Digitizing

Since the Level 1 DFAD did not provide sufficient detail for ARIES, TEXCOM labs obtained
medium scale paper maps (e.g., 1:50,000 and 1:100,000) from the NIMA. The ETE test team
digitized features from these maps to augment Level 1 DFAD.

3.0.3 Putting the Data into a Standard Form

When pulling the data together, it was unlikely that it would all be in a consistent format.
Therefore, three important references were considered during ETE terrain database
development—datums, map projections, and map scales.

3.0.3.1 Datums

In general terms, the size and shape of the Earth is modeled as a spheriod. A geodetic datum uses
this approximation to define the mathematical relationship of the size and shape of the Earth to a
coordinate system. Since there are many methods to describe the Earth, different countries and
agencies use different datums to identify coordinates in GIS software. Referencing coordinates to
the wrong datum can result in position errors of several kilometers, so it is important to be aware
of the variety of datums. Coordinates in the ETE terrain database are in World Geodetic System
1984 (WGS84).

3.0.3.2 Map Projections

A map projection portrays the surface of the Earth on a 2-D plane. Unfortunately, projection
always creates distortions of the Earth's surface in shape, scale, and area. The key to selecting
the best projection is determining which projection minimizes those distortions most important to
the cartographer. DFAD is distributed in geographic coordinates (latitude and longitude). All of
the paper maps used in developing the ETE terrain database were in the Universal Transverse
Mercator (UTM) projection. In order to merge the two in GIS software, UTM coordinates were
transformed into geographical coordinates. Later, the coordinates were projected into the
Topocentric Coordinate System (TCS) for use in VSTARS.

3.0.3.3 Map Scales

The map scale (e.g., 1:1,000,000 or 1:50,000) is the relationship between the distance on a paper
map to the same distance on the Earth's surface. Mathematically, this relationship is:

1
(Scale Denominator)

(Map Distance) x (Units Conversion)
(Earth Distance)

The map scale also determines how features are depicted on a paper map. Feature representation
changes with map scale. A map scale with a small, scale denominator has the greatest feature
detail and is ironically considered to be a large-scale map. With a small-scale map, the location
and size and shape of features become distorted. Some features are even omitted. Therefore, it is
best to work with the largest map scale that is available.

3.0.4 Manipulating the Data

The first question in developing a digital terrain database is "How large of an area is the database
going to cover?" This is an important question in that the answer determines how the terrain
database is built. A second, and equally important question, is "What is the location of the
database?" An area with a number of features also affects how the terrain database is built. In
either case, the idea is to convert individual DFAD cells into the largest area possible.

A DFAD file consists of a set of manuscripts that contain point, line, and area features over a 1°
by 1° geographic cell. Each manuscript is a database of geographic coordinates and attributes that
identify natural and man-made features to a specific level of accuracy. See MIL-PRF-89005 for
the DFAD performance specification. When ARC/INFO® converts a DFAD file, it creates a
workspace with two coverages per manuscript (DS01P...DS0«P and DS01L...DS0nL), where n
corresponds to the number of manuscripts in the DFAD file. See Figure 3 for the graphical
relationship between an ARC/INFO® workspace and DFAD file.

ARC/INFO Workspace DFAD File

coverage DS01L
(lines & points)

coverage DS01P
(areas)

o -o Manuscript #1

coverage DS02L
(lines & points)

coverage DS02P
(areas)

o -o Manuscript #2

•4 DFADARC

ARCD F AD ►

Figure 3 Converting between ARC/INFO® and DFAD

Each DSO«L coverage contains both line and point features. Each DSOnP coverage contains area
features. Furthermore, ARC/INFO® coordinate and attribute files are related by an item called
FACODE. The FACODE in the DSOKL.ACODE, DSOnL.XCODE, and DSOnP.PCODE files are related
to the DSOHL.AAT, DS0«L.PAT, and DSOHP.AAT coverJDs respectively. Figure 4 illustrates how
point, line, and area features and attributes are stored in ARC/INFO®.

DFAD File

Manuscript #1

Header Record

Data Set ID Record

Accuracy Record

Feature Records ...

4C

-t>

ARC/INFO Workspace

Coverage DS01L

DS01L.DES

DSOILAAT(line)
DS01L.ACODE

DS01 L.PAT (point)
DS01LXCODE

DS01 L.NAT

Coverage DS01P

DS01P.DES

DSOIP.AAT(area)
DS01P.PCODE

DS01 P.NAT

Figure 4 Relationship between DFAD and ARC/INFO® Attributes

The following paragraphs give a technical "how-to" create digital terrain databases. Figure 5
illustrates the ETE terrain database development process. Of particular note, the "edgematch &
attribute check" and "digitize" steps require the greatest resources. Although this is the method
used to create the ETE terrain database, there may be a better process. The recommendations
section in this report explores other techniques that may be used in the future. Since the terrain
database was created using ARC/INFO®, software specific command line entries are bolded with
square brackets. These steps also assume correct references to datum, projection, and scale.
Finally, the source code for any references to ARC/INFO® macro language (AML) scripts, PV-
WAVE® procedures, and C and FORTRAN code can be found in the appendices of this report.

«■ RunDFADARC.

[DFADARC <dfad file> <workspace>] This command converts the DFAD cells
that will be used in the ETE terrain database into ARC/INFO® coverages and
workspaces.

®° Join attributes.

[RUN join_codes.aml] This AML joins ARC/INFO® attribute files with the
corresponding ARC/INFO® feature file. Refer to Figure 4 to see how files are
related.

^ Create large coverage (s).

This step creates a large coverage from several ARC/INFO® coverages. A single
coverage is created for the area features, and a single coverage is created for the line and
point features.

Area

[PUT <coverage>] • This command is performed for each coverage that will
comprise the large coverage. Select the boundary, put it to a new coverage called
MASTERBNDS, and then delete the boundary.
[APPEND <new coverage> line features] This command joins the area coverages
into a large coverage.
[BUILD <new coverage> line] This command builds area topology for the new
coverage.
[CLIP < new coverage > <clip box> <clip coverage> line 0.00001] If a subset of
the large coverage is desired, this command will "cookie cut" the large coverage
based on the shape of the clip coverage. After using this command, manually
"close" any polygons that have been clipped.
[BUILD <clip coverage> line] This command builds topology for the new area
coverage.

Lines & Points

[APPEND <new coverage> link features] This command joins the line and point
coverages into a large coverage
[BUILD <new coverage> line] This command builds line topology for the new
coverage.
[BUILD <clip coverage> point] This command builds point topology for the new
coverage.
[CLIP <new coverage> <clip_box> <clip coverage> link 0.00001] If a subset of
the large coverage is desired, this command will "cookie cut" the large coverage
based on the shape of the clip coverage.
[BUILD <clip coverage> line] This command builds line topology for the new
coverage.
[BUILD <clip coverage> point] This command builds point topology for the new
coverage.

^ Edgematch & attribute check.

First, manually "edgematch" each new coverage with a back coverage of
MASTERBNDS. MASTERBNDS provides a template for all of the original cell
boundaries. It is useful because it identifies the areas that need to be edgematched.

Next, correct or create attributes for each feature. See appendix A for a list of supported
features in ARIES. Appendix B shows the values used for attributes of features in the
ETE terrain database.
Each feature needs a distinct ID. The following commands create separate IDs for all
features in the ETE terrain database.

Use these commands for DSOnL.AAT.
[CALC dsOll-id = dsOll-id + 10000]
[CALC facode = dsOll-id]
[IDEDIT dsOll line]

Use these commands for DSOnL.PAT.
[CALC dsOll-id = dsOll-id + 20000]
[CALC facode = ds011-id]
[IDEDIT dsOll point]

Extract the attributes from each coverage as temporary .acode, .pcode, and .xcode files.

[INFODBASE <info file> <dbase file>] This command converts ARC/INFO® files
into dbase format.

Use Microsoft® Excel to read the. dbase files. Eliminate the duplicate feature entries.
NOTE: The boundary feature should always have an ID = 1.

[DBASEINFO <dbase file> <info file> define] This command converts dbase files
back to ARC/INFO® format.

.acode Define the ARC/INFO® line files as shown below.
facode facode 4 5 B
height height 4 5 B
ficode ficode 4 5 B
smccode smccode 4 5 B
direct direct 111
width width 2 3 B
.xcode Define the ARC/INFO® point files as shown below.
facode facode 4 5 B
height height 4 5 B
ficode ficode 4 5 B
smccode smccode 4 5 B
orientatio orientation 2 3 B
length length 2 3 B

width width 2 3 B
.pcode Define the ARC/INFO® area files as shown below.
facode facode 4 5 B
height height 4 5 B
ficode ficode 4 5 B
smccode smccode 4 5 B
nstruct_ps nstruct_psk 2 5 B
pct_tree_c pct_tree_cov 2 5 B
pct_roof_c pct_roof_cov 2 5 B

[RUN modify_codes.amI] This AML organizes .pcode, .acode, and .xcode files so
that features are incremented by 1 in ascending numerical order.

Run DFADARC

Run GENERATE

7
Run ARCDFAD

7
Figure 5 Terrain Database Development Process

Creating ARC/INFO® coverages from Arc View® projects.

This step gets digitized features from Arc View®. After this conversion, the previous step,
edgematch & attribute check, must be redone.

[SHAPEARC <shape file> <coverage>] This command converts an ArcView®
shape file into an ARC/INFO® coverage.

Run ARCDFAD.

[ARCDFAD <workspace> <dfad file>] This command converts ARC/INFO®
coverages into a DFAD file.

Converting from DFAD to ARIES format.

10

dfad2bits.f This FORTRAN program converts 32 bit DFAD to 36 bit words and
writes an ASCII file of 36 bit words.

bits2aries.f This FORTRAN program reads the 36 bit ASCII file and writes
DFAD features to ARIES format but with coordinates in latitude-longitude.

aries2tcs.pro This PV-WAVE® procedure converts latitude-longitude coordinates
into TCS coordinates. The ARIES file format is TCS (X, Y) only.

tcs2bin.pro This PV-WAVE® procedure converts the ARIES file to binary
format.

I

7
Figure 6 Converting to the ARIES format

®° Creating Janus terrain from ARC/INFO® coverages.

[UNGENERATE <line | point> <coverage> <text file>] This command converts
ARC/INFO® coverages into (x, y) point files.

janus2arc.c This C program converts (x, y) point files into a format that can be
read by Janus terrain input tools.

3.0.5 Limitations

The greatest limitation of creating the ETE terrain database is the quality of the data. Although
most of the digital data is obtained from NIMA, there is no consistency between geographic cells
of data. Often, features shown on a comparably scaled paper map do not match, or worse, are
missing. This brings up an interesting dilemma. "Do you use DFAD Level 1 in its original
format?" In the case of the ETE terrain database, more detailed digital data was not available.
"Or, do you spend time and resources to digitize the detail, correct features across geographic cell

11

boundaries, and modify feature attributes to make them more realistic?" That is what happened
with the ETE terrain database.

Only 16,383 features are allowed in each DFAD manuscript. Since the ETE terrain database
ultimately contained over 45,000 features, a single manuscript was not possible. Since each
manuscript contains lines, points, and area features (refer to figure 4), it made sense to create
several smaller manuscripts to define the area. The basic premise was to divide manuscripts based
on existing DFAD geographic cell boundaries. This organized the area and made it easier to
edgematch. Dividing cells independently of existing boundaries, while possible, would have
added unnecessary complexity and manhours to the project. The benefit of this approach was that
it was possible to set up separate manuscripts to distinguish between original DFAD and the
digitized detail.

The computer hardware (Hewlett-Packard 735 workstation with 144-megabyte memory and 8-
gigabyte hard disk storage) used to run ARC/INFO® was adequate for the project; however, using
a comparatively inferior workstation could jeopardize a user's ability to quickly navigate (zoom
in, out, or across) coverage views. Computer disk space was never a concern. The entire ETE
terrain database could have been completed using a 4-gigabyte hard disk drive. A Pentium® class
personal computer and digitizer is required for digitizing into Arc View® and performing other
data manipulations. Finally, the computers need to be networked to facilitate the exchange of
data between Arc View®, ARC/INFO®, and Microsoft® Excel.

Finally, during the ETE terrain database development, there was no ability to view features as
they would appear in ARIES. Feature attributes (length, width, height), as defined by the DFAD
specification, were coded in the database as half their actual value and then only as a whole
number. Also, the feature orientation was coded in the database as a whole number from zero to
eight, with each number representing the orientation of the feature's length as a multiple of 11.25
degrees from true north. Refer to appendices A and B for the following example. A single family
dwelling (coded as length = 6, width = 4, height = 2, and orientation = 4) would be a 12-meter by
8-meter by 4-meter feature oriented at 45 degrees in ARIES. Imagine thousands of features in
any given area. It would be nice to know how these attributes affect one another with a 3-D
visual representation.

4.0 Lessons Learned

In order to accomplish the project, it is essential to not only have the software, but have personnel
trained to use it. It took approximately 18 months to develop the ETE terrain database. Four of
those months were spent learning the GIS software and developing the processes that would be
used to create the database. An individual with GIS software experience could easily shave 25%
off this timeline, if not more. Adding additional people would also decrease development time.
In this case, resources would be best allocated during the laborious edgematching and digitizing
steps shown in figure 5.

12

The level of effort required to develop a terrain database is time and manpower intensive, but
careful planning can shorten the development schedule. Time can be saved by not having to
correct the digital data.

• Get the most recent and accurate data available from NIMA.
• Use a consistent datum, for example WGS84, when digitizing from paper maps.
• Determine what fidelity is required for the terrain database.

The ETE terrain database was developed for the relatively featureless desert of SWA. The
additional terrain and feature complexity of Bosnia or Korea would require a GIS team and
systematic plan to divide and conquer the terrain database.

Map error is cumulative and comes from various sources. Using map projections introduces
error. Carelessly mixing datums introduces error. Digitizing introduces error. Converting
between file formats of different terrain databases introduces error. The only way to minimize
map error in distributed simulations is to ensure that all simulations use a common terrain
database.

5.0 Recommendations

There are several emerging technologies that could improve ETE terrain database development in
the future. First, an easy method to transfer features from intelligence sources (such as satellite
photos) into a digital format would provide the capability to quickly add exceptional detail to
terrain databases. R2V™ from Able Software Company, ERDAS® IMAGINE Advantage™ with
IMAGINE vector module, and AUTOGRAPHICS® from LMTDS, Akron, OH are three software
packages that would facilitate raster to vector conversion during terrain database development.
Second, eliminating conversions between file formats of different terrain databases would
minimize map errors among distributed simulations. Vector Product Format (VPF) is meta-data
and the Synthetic Environment Data Representation & Interchange Specification (SEDRIS) is a
meta-model that promises to be compatible with a wide variety of applications.

R2V™ is a simple, intuitive software package that automatically vectorizes raster images. R2V™
has standard vector editing tools, but its sub-par image processing tools would limit projects with
complex images. R2V™ can label, georeference, and export vector data to other major GIS
formats. Another great feature is the ability to merge multiple vector files. For more information,
visit Able Software Company on the web at http://www.ablesw.com.

The ERDAS IMAGINE® software package is more robust than R2V™. ERDAS IMAGINE®
works with a variety of raster and vector formats. ERDAS® IMAGINE Advantage™ allows the
user to directly access image data in native format, and then display and link multiple data files.
When combined with the vector module, this important feature gives the user the ability to create
and edit vector data from images. Orthocorrection, advanced image processing, and spatial
analysis make it easier to develop accurate databases. For more information, visit ERDAS® on
the web at http://www.erdas.com.

13

The AUTOGRAPHICS® software package allows the user to "train" the software to extract
features from a raster image of a paper map. First, the user selects an example of each feature
from the raster image with point-and-click actions. After the user identifies examples, the
software automatically classifies the remaining features in the image. For more information,
contact LMTDS Business Development in Akron, Ohio at (330) 796-4747.

MIL-STD-2407 defines the VPF standard. VPF data, also called meta-data, is arranged as
directories, tables and indices. Essentially, VPF provides a model that describes the structure,
organization, and relationships of the information in a terrain database. This allows fast, direct
access of the database with no need for translation. The NIMA web site at http://www.nima.mil
has more information about VPF.

SEDRIS uses the concept of meta-data and extends it to the synthetic environment. SEDRIS
calls for an application programmer interface (API) to access a terrain database. An API converts
between a simulation's native data format and the SEDRIS model. This means that simulations in
a synthetic environment can truly be interoperable. Instead of relying on custom terrain
databases, each simulation in the synthetic environment could simply use an API to interact with a
common terrain database. Another distinct advantage of the SEDRIS model is that it is easier to
communicate with other simulations by describing the data through attributes than through a data
storage format. For more information, visit the SEDRIS home page on the web at
http://www.sedris.net.

6.0 Conclusion

Terrain database development is labor intensive and time-consuming. However, a GIS manager
can organize a tool chest of software that makes building terrain databases easier. Careful
planning and ample resource allocation ensures that the terrain database is completed quickly.
Once the terrain database has been developed, have all the simulations in the synthetic
environment use a common terrain database. By eliminating the need for terrain database
conversion between simulations, you speed up data access and minimize the map errors that
inevitably plague distributed simulations.

14

Appendix A - Feature Identification Codes supported by ARIES

The following Feature Identification (FID) codes are used to describe the predominant nature of
all features (area, linear, and point) that are supported by ARIES.

Feature Identification FID Code

Area Features

Quarry ■■ 102
Depot 778
Sou. 902
Packed Sand & Gravel 906
Sand Dunes 907
Salt Marsh 908
Smooth Solid Rock. 910
Rocky Flat 912
Dry Lake 913
Flood Plain 914
Loose Sand. 917
Dry Depression 918
Wadi 919
Salt Flat 934
Fresh Water (GeneraL) 940
Non-Perennial Stream (Linear Portrayal.) 945
Orchard/Hedgerow (Background) 951
Irrigated Field 958

Linear Features

Railroad 206
Dual Highway (with Median) 250
All Weather Hard Surface Highway 251
All Weather Loose or Light Surface Road 252
Fair Weather Loose or Light Surface Road 253
Cart Track, Trail 254
Road, Approximate Alignment, Under Construction,
Existence Reported 255
Pipeline (Above Ground). 281
Powerline Pylon (Type "A") 541
Powerline Pylon (Type "H") 542
Powerline Pylon (Type "I") 543
Powerline Pylon (Type "Y") 544
Runway andTaxiway. 706
Cleared Way 916
Wadi 919
Levee 921
Wall 922
Escarpment 924
Chain Link Fence 927
Freshwater 940
Non-Perennial Stream (Linear Portrayal) 945
Canal/Channelized Stream/Drainage Ditch,
(Subject to Ice, Linear Portrayal) 947
Revetment • 981
Berm 982

15

Barbed Wire Fence 983
Concertina Fence 984
Ditch 985
Trench 986

Point Features

Gas/Oil Derrick : 103
Offshore Platform 104
Refinery 120
Power Plant (General) 130
Substation 138
Light Fabrication Industry (General) 160
Associated Structure (General Industry.) 180
Building 181
Smokestack 182
Pumping Station 184
Railroad Station. 222
Bridges (General) 260
Associated Structure (General Transportation) 290
Commercial Building (General) 301
Grandstand 324
Multi-Family Dwelling (General) 401
Single Family Dwelling (General) 420
Agricultural Building (General) 430
Cemetery Building 451
Communication Tower 501
Miscellaneous Tower 530
Power Transmission Tower (General) 540
Governmental (General) 601
Prison 604
School 620
Hospital 630
House of Religious Worship (General) 650
Associated Structure (General Institutional.) 680
Airport/Airbase (General) 701
Ground Support Facility (General) 770
Tank (General) 801
Grain Elevator 822
Water Tower (Building) 824
Warehouse 861
Date Palm 957

16

Appendix B - Modified DFAD Feature Attributes

FID HEIGHT SMCCODE ORIENTATION DIRECT LENGTH WIDTH
(m) (deg) (m) (m)

251 0 14 - 3 - 4

252 0 14 - 3 - 4

253 0 5 - 3 - 4

254 0 5 - 3 - 2

281 2 2 - 2 - 1

706 0 9 - 3 - 25/12/8/4

921 3/1 5 - 2 - 6/3

922 3 3 - 2 - 2

927 3 1 - 2 - 1

940 0 6 - 2 - 6

947 0 6 - 2 - 15

984 2 1 - 2 - 1

103 15 2 0-8 - 25 25

130 15 2 0-8 - 25 25

138 5 3 0-8 - 15 15

180 5 3 0-8 - 15 15

181 5 3 0-8 - 15 15

182 15 3 0-8 - 2 0

184 5 3 0-8 - 15 15

222 4 2 0-8 - 25 25

420 3/2 3 0-8 - 10/6 4

430 5 3 0-8 - 15 15

601 5 3 0-8 - 15 15

650 5 3 0-8 - 15 10

701 3 3 0-8 - 12/5 12/5

770 2 3 0-8 - 10/2 8/2

801 4 1 0-8 - 4 0

824 6 1 0-8 - 2 0

861 5 3 0-8 - 25 25

957 4 12 0-8 - 2 0

17

Appendix C - Digital Data Base ICD for ARIES

DIGITAL DATA BASE

Interface Control Document

for the

ADVANCED RADAR IMAGING
EMULATION SYSTEM (ARIES)

Contract Number: F33615-95-C-1610

CDRL Sequence Number: A025

30 September 1996

Prepared for:

Air Force Wright Laboratory

Prepared by:

Lockheed Martin Tactical Defense Systems
Post Office Box 85

Litchfield Park, Arizona 85340-0085

This document includes proprietary data that shall not be disclosed outside Lockheed Martin
Tactical Defense Systems and its designated parties and shall not be duplicated, used, or

disclosed, in whole, or in part, for any purpose.

This restriction does not limit the customer's right to use information contained in the data if it is
obtained from another source without restriction.

18

TABLE OF CONTENTS

1. SCOPE 19
1.1 Purpose 20
1.2 Application 20
1.3 Definitions and Conventions 20

2. APPLICABLE DOCUMENTS 20
3. DATA BASE DESCRIPTIONS , 20

3.1 Data Base Coordinate System 20
3.1.1 UNITS OF MEASURE 20
3.1.2 HORIZONTAL REFERENCE 20
3.1.3 VERTICAL REFERENCE 20
3.1.4 MAXIMUM COORDINATES 21

3.2 Digital Terrain Data Base 21
3.2.1 TERRAIN DATABASE STRUCTURE 21

3.3 Digital Feature Data Base 21
3.3.1 FEATURE DATA BASE STRUCTURE 22

4.3 Digital Contour Terrain DataBase 22
4.3.1 CONTOUR TERRAIN DATA BASE STRUCTURE 22

19

1. SCOPE
This document defines the contents of the digital terrain and feature data base to be used by the
ARIES Synthetic Aperture Radar (SAR) Imagery Simulation being developed by Lockheed-
Martin Tactical Defense Systems (Lockheed-Martin) for incorporation into the Radar Processor
Simulation (RPS) on the Joint STARS platform. The RPS is being developed for the integration
of Joint STARS into the Joint Advanced Distributed Simulation (JADS) environment.

1.1 Purpose
The purpose of this document is to define the characteristics and structure of the digital terrain
elevation and feature data base for the ARIES simulation. The SAR image produced by the
ARIES simulation represents the terrain elevation characteristics and the specific features and
their locations in the area simulated. This data base will be structured Defense Mapping Agency
Digital Terrain Elevation Data and Digital Feature Analysis Data products.

1.2 Application
Interface requirements set forth in this document apply during the development and testing of the
ARIES SAR simulation and the RPS.

1.3 Definitions and Conventions
The following conventions were used to describe each message interface:

2. Applicable Documents
The following documents are applicable to the extent specified herein:

DMA Digital Terrain Elevation Data (DTED) Specification

DMA Digital Feature Analysis Data (DFAD) Specification

3. Data base descriptions
3.1 Data Base Coordinate System
The data base shall utilize a topocentric coordinate system. The coordinate system uses a
reference plane tangent to the earth at the Latitude and Longitude specified when the data base is
constructed. Lines in the reference plane are orthogonal while lines of Longitude on the earth's
surface curve together as Latitude increases.

3.1.1 Units of Measure
All measurements shall be in meters.

3.1.2 Horizontal Reference
The axes in the plane shall be oriented East-West (X) and North-South (Y). Displacements to the
North and East from the topocentric center shall be positive. Displacements to the South and
West shall be negative.

3.1.3 Vertical Reference
Elevation at the data points shall be referenced to the topocentric plane. Points with elevations
below the plane shall be negative, points above the plane shall be positive. Points which fall in the
plane will have an elevation of zero. It should be noted that points of constant elevation
referenced to Sea Level in the DTED data base will produce elevations that vary in the
topocentric coordinate system, based on the distance from the JSTARS topocentric center.

20

3.1.4 Maximum Coordinates
The maximum displacement along either horizontal axis from the topocentric center shall be ±
256.000 meters. The maximum displacement along the vertical axis shall be -12,000 meters to
+9,000 meters.

3.2 Digital Terrain Data Base
The ARIES digital terrain data base will be derived from DMA DTED Level 1 terrain elevation
data. The terrain data base will merge data from a number of standard DMA DTED files to
produce one data base covering the entire 512 KM x 512 KM area.

A coordinate conversion will be required to map the DTED data referenced to a Latitude-
Longitude coordinate system to the JSTARS topocentric coordinate system.

3.2.1 Terrain Database Structure
The terrain database shall be structured in the same manner as specified in the DTED
specification. The number of entries at any given latitude will be a constant due to the
orthogonality of the coordinate system compared to the Latitude-Longitude coordinate system.

3.3 Digital Feature Data Base
The ARIES digital feature data base will be derived from DMA DFAD Level 1 feature data. The
feature data base will merge data from a number of standard DMA DFAD files to produce one
data base covering the entire 512 KM x 512 KM area.

A coordinate conversion will be required to map the DFAD data referenced to a Latitude-
Longitude coordinate system to the JSTARS topocentric coordinate system.

Additional features may be added to the data base at the direction of the JADS program office.
Format for these features shall be in accordance with the DMA DFAD specification. New types
of features will also be added which are not represented by current Feature Identification
Numbers (FID).

The table below defines the new features (non-DFAD) to be added to the Digital Feature
Database.

Non-DFAD Feature Definitions

NAME FID TYPE
linear

linear

linear

linear

point

Some features required are not directly supported by DFAD features but can be indirectly
supported using corresponding existing DFAD FID's. The table below identifies these features
and the substitute feature to be used.

Chain Link Fence 935

Barbed Wire Fence 936

Concertina Fence 937

Anti-Tank Ditches 938

Date Palm Trees 957

21

Substitute DFAD Feature Definitions

Non DFAD Feature
Rocky flats

Packed sand and gravel

Loose sand

Dry depressions with sandy bottoms

Wadis

Escarpments

Substitute DFAD Feature
Boulder Field (FID(#911), Rocky, Rough Surface (FID #912)

Sand/Desert (FID #906)

Sand/Desert (FID #906)

Sand/Desert (FID #906) with DTED

Sand/Desert (FID #906) with DTED

Ground Surface (FID #902), Sand/Desert (FID #906), Cliffs (FID

Salt marshes

Salt flats

Flood plains

Date palm orchards

Irrigated fields

Oil wells

Revetments

Below ground sand/dirt trenches

Sand/dirt ditches

Transmission towers - 4 sided
pyramidal

Electrical power lines

Dirt and concrete dikes and levees

#924) with DTED

Ground Surface (FID #902), Marsh/Swamp (FID #908)

Salt Pans (FID #934)

Ground Surface (FID #902), Mud/Tidal Flats (FID #914)

Orchards (FID #951)

Soil (FID #902), Vegetation (FID #950)

Gas/Oil Derrick (FID #103)

Levees/Embankments (FID #921), Low Embankments/Low Levees
(FID #980)

Ground Surface (FID #902), Sand/Desert (FID #906) with DTED

Ground Surface (FID #902), Sand/Desert (FID #906) with DTED

Communications Towers (FID #501), Radio/Television Towers (FID
#'s 511, 512), Power Transmission Towers (FID#504)

Powerline Pylons (FID #'s 541-544)

Conduits (FID #280), Levees/Embankments (FID #921), Low
Embankments/Low Levees (FID #980)

Walls (FID #922)

Pipelines (Above Ground) (FID #281)

Dirt and concrete walls and berms

Pipelines within trenches

3.3.1 Feature Data Base Structure
The feature database shall be structured in the same manner as specified in the DMA DFAD
specification. Changes to this structure will occur in the maximum number of features per data
set and the limitations on the maximum geographic area covered by the data base.

4.3 Digital Contour Terrain Data Base
The ARIES digital contour terrain data base will be derived from DMA DTED Level 1 terrain
elevation data. The contour terrain data base will merge data from a number of standard DMA
DTED files to produce one data base covering the entire 512 KM x 512 KM area.

A coordinate conversion will be required to map the DTED data referenced to a Latitude-
Longitude coordinate system to the JSTARS topocentric coordinate system.

22

4.3.1 CONTOUR TERRAIN Data Base Structure
The contour terrain database shall be structured in contour vectors. Each contour vector shall be
separated in elevation by 10 meters. The contour terrain database file will a binary data file as
created by PV-WAVE®.

23

Appendix D
Scripts

ARC/INFO® Macro Language

/* startup.ami
/* Unix version of startup.ami
/*
/* Run this ami to set up the Arc/Info environment and initialize
/* convenient variables for each workspace.
/*
/* Created 1/2/97 by Capt Rodney Houscr
/*
&tcrm 9999
display 9999 3
coordinate mouse
&sctvar .etc = /disk 1/uscrs/ai/ctc/
Äsctvar .arics = /diskl/uscrs/ai/ctc/aries/
Äsctvar janus = /diskl/uscrs/ai/ctc/sccnario/janus/
precision double
& return

/* join_codcs.aml
/* This ami joins the pcodc, acodc, and xcodc files for one coverage. Copy
/* and run this ami from the workspace that contains the coverage.
/*
/* Created 08/07/97 by Capt Rodney Houscr
/*
relate restore dsOlp.rclatc
tables
additcm dsOlp.aat facodc 4 5 B # ds01p-id
sei dsOlp.aat
calc facodc = ds01p-id
q
joinitcm dsOlp.aat dsOlp.pcodc dsOlp.aat facodc facodc
rcgionclass dsOlp rcg land ds01p-id facodc
clean rcg rcg ## poly
joinitcm rcg.patland rcg.pcodc rcg.patland facodc facodc
crcatclabcls rcg
relate restore dsOll.rclatc
tables
additcm dsOl l.aat facodc 4 5 B U ds01l-id
scldsOH.aat
calc facodc = ds01I-id
q
joinitcm dsOl l.aat dsOll.acodcdsOl l.aat facodc facodc
tables
additcm dsOl l.pat facodc 4 5 B # dsOl 1-id
scldsOll.pat
calc facodc = ds01l-id
q
joinitcm dsO I l.pat dsOll.xcodc dsOl l.pat facodc facodc
&return

/* crcatc_rcgions.aml
/* This am! creates a new region subclass LAND for DFADARC coverages, and
/* joins attribute information to that subclass. Replace XXXX
/* with the workspace variable name.
/*
/* Created 08/07/97 by Capt Rodney Houscr
/*
relate restore dsOlpXXXX.relate
tables
select dsOlpXXXX.aat
additcm dsOlpXXXX.aat facodc 4 5 B # ds01pXXXX-id
calc facodc = ds01pXXXX-id
q
joinitcm dsOlpXXXX.aat dsOlpXXXX.pcodc dsOlpXXXX.aat facodc facodc
rcgionclass dsOlpXXXX rcgXXXX land ds01pXXXX-id facodc
clean rcgXXXX rcgXXXX ft ft poly
joinitcm rcgXXXX.patland regXXXX.pcodc rcgXXXX.pat I and facodc facodc
crcatclabcls rcgXXXX
&return

/* modify„codcs.aml
/* This ami organizes pcodc, acodc, and xcodc files so that features
/* arc incremented by 1 in ascending numerical order. Copy and run
/* this ami from the workspace that contains the final dsOlp and
/* dsO 11 coverages.
/*
/* Created 08/07/97 by Capt Rodney Houscr
/*
tables
additcm ds01l.acodcpin4 5 B# facodc
additcm dsOl I.xcodc pin 4 5 B # facodc

additcm dsOlp.pcodc pin 4 5 B # facode
/*
scl dsOlp.pcodc
calc pin = Srccno
scl dsOII.acodc
calc pin = Srccno
scl dsOll.xcodc
calc pin = Srccno
scl
/*
dir *codc
&pausc Identify number of records
&s pcodc [response 'Enter number of pcodc records']
&s acodc [response 'Enter number of acodc records']
scl dsOll.acode
calc pin = pin + %pcodc%
scl dsOll.xcodc
calc pin = pin + %pcodc% + %acodc%
q
/*
pullitems dsOlp.pcodc dsOlp.ppin
~facodc
~pin
-end
pullitems dsOll.acode dsOll.apin
-facodc
-pin
-end
pullitems dsOll.xcodc dsOll.xpin
-facodc
-pin
-end
/*
joinitcm dsOlp.aat dsOlp.ppin dsOlp.aat facode facodc
joinitcm dsOll.aat dsOll.apin dsOll.aat facodc facodc
joinitem dsOH.pat dsOll.xpin dsOl l.pat facodc facodc
/*
tables
scl dsOlp.aat
calc ds01p-id = pin
calc facodc = pin
scldsOH.aat
calcds01l-id = pin
calc facodc = pin
scl dsOl l.pat
calc ds01l-id = pin
calc facodc = pin
scl
/*
dropitcmdsOl l.pat pin
dropitcm dsOll.aat pin
dropitcm dsOlp.aat pin
/*
scl dsOlp.pcodc
calc facodc = pin
scl
dropitcm dsOlp.pcodc pin
scl dsOll.acode
calc facodc = pin
scl
dropitcm dsO 11.acodc pin
scl dsOll.xcodc
calc facodc = pin
sei
dropitcm dsOl I.xcodc pin
/*
kill dsOlp.ppin
kill dsOll.apin
kill dsOll.xpin
q
/*
idedit dsOlp line
idcditdsOll line
idedit dsO 11 point
&return

24

Appendix E - C Code

^include <sys/filc.h>

int iopcn (ch, nch)
char *ch;
int *nch;
(

return (open (ch, 0_CREAT | 0_WRONLY. 0777));
1

int iopcnr(ch, nch)
char *ch;
int *nch;
{

return (open (ch, 0_RDONLY));

int ircad (fd, buf, nbytes)
int *fd;
char *buf;
int *nbytcs;
{

int num;

num = read (*fd, buf, ""nbytes);
if (num < 0)
{

perror ("\nbinio read");
>
return (num);

int iwritc (fd, buf, nbytes)
int *fd;
char *buf;
int *nbytcs;
{

int num;

num = write (*fd, buf, *nbytcs);
if (num < 0)
{

perror ("\nbinio write");
}
return (num);

/* arc2janus.c */

«define PROG_Il "This program converts an arcinfo ungencrate ascü file"
«define PROGJ2 " (in utm) into janus compatible terrain data input file"

«include <stdio.h>
«include <string.h>
«include <stdlib.h>

«define NUM_FILETYPES '
»define TRUE 1
«define FALSE 0
«define MAX_NUM_TOKENS
«define MAX_TOKEN_CHARS
«define NUM_SEPARATOR_CH ARS
«define MAX.NUNIFEATURES
«define MAX_NUM_VERTICES

5
20

4
10000/* janus limit is 10000 */

100000 /* janus limit is 100000 */
#dcfmcMAX_NUM_VERTICES_PER_FEATURE 1000/* janus limit is 1000 */

/********* DECLARE FUNCTIONS •••«••••
void writc_fcaturc„sct();

int gcMokcns (char *string, char "separator, char *tokcn[],
int max_tokcn_chars, int max_num_tokcns);

/******«** GLOBAL VARIABLES •••»••♦*•«*•»»•«♦•••••»••••
int num^fcaturcs = 0 ;
int fcaturc_num ;
int npts;
double fcaturc_casting [MAX_NUM_VERTICES_PER_FEATURE];
double fcaturc_northing[MAX_NUM_VERTICES_PER_FEATURE];
FILE Tout;
char filctypc [256];

int filetypc_id;

/*«******* MAIN PROGRAM *************'
void main 0
{

FILE *fin;
int i;
int good_file„typc;
char filename [256];
char outputfile [256];
char filctypcs [NUM_FILETYPES][25];

int numjokens;
char linc[256];
char scparator[NUM_SEPARATOR_CHARS] =
char *tokcn[MAX_NUM_TOICENS];

**** >f *** * * *

"\t"; /+ SPACES OR TABS*/

// ALLOCATE STORAGE FOR THE TOKENS
for (i=0; i<MAX_NUM_TOKENS; i++) {

if ((tokcn[i] = (char *) malloc (MAX_TOKEN_CHARS)) = NULL) {
fprintf (stdcrr, "Couldn't allocate token storagc\n") ;

/* DEFINE THE ACCEPTABLE FILE TYPES */
strcpy (filctypcs[0], "Dual Highway") ;
strcpy (filctypcs[l], "Highway");
strcpy (filctypcs[2], "Road") ;
strcpy (filctypcs[3], "River");
strcpy (filctypcs[4], "Runway") ;
strcpy (filetypcs[5], "Lcvcc");
strcpy (filetypcs[6], "Wall");
strcpy (filctypcs[7], "Fence");
strcpy (filctypcs[8], "Lake");

/* PROMPT USER FOR INPUT FILE */
printf ("\n%s\n%s", PROGJ1, PROGJ2);
printf ("\n\nEntcr file to convert: ");
scanf ("%s", filename);
printf ("File Selected: %s", filename);

/* CREATE THE OUTPUT FILENAME +/
strcpy (outputfile, filename);
strcpy (strrchr (outputfile, V)+t, "env");

/• OPEN THE OUTPUT FILE */
if ((fout = fopen (outputfile, "w")) == NULL) {

fprintf (stdcrr, "\nERROR .. could'nt open ouput file: %s\n",
outputfile);

exit (0);
}

/* PROMPT USER FOR THE TYPE OF FILE */
printf ("\n\nID Source file type") ;
for (i=0; i<NUM_FILETYPES; i++) printf ("\n%d %s", i, filctypcs[i]);

good_filc_typc = FALSE;
while (!good_fiIe_typc) {

printf ("\n\nEntcr ID of Source file type (99 to exit): ");
scanf ("%d", &filctypc_id);

if (filctypc_id > -1 && filctypejd <= NUM_FILETYPES) {
good_filc_typc = TRUE;

)
if(filctypc_id==99) (

printf ("\n\nExiting .. thanks, its been fun!M\n");
exit (0);

if (!good_filc_typc) {
printf ("\nYou must enter the ID of one of the Source File types");
printf ("or 99 to exit!!!");

)
printf ("ID of Source file entered: %d Filctypc: %s\n".

25

Filctypcjd, filctypcs[filctypc_id]);

/•OPEN THE INPUT FILE*/
if ((fin = fopcn (filename, "r")) = NULL) (

fprintf (stdcrr, "\nUnablc to open %s\n", filename);

/* PERFORM THE CONVERSIONS */
while (fgcts (line, sizcof (line), fin) != NULL) {
•strchr (line, V) = W ; // REMOVE NEWLINE

num_tokcns = gcMokcns (line, separator, token.
MAXJTOKEN_CHARS, MAX_NUM_TOKENS);

if (num_tokcns == 0) {
fprintf (stdcrr, "\nERROR .. got zero tokcns\n");
break;

// IF ONLY 1 TOKEN, IT'S THE END OF A FEATURE SET OR BEGINNING
if (num_tokcns == 1) {

if (slrcmp (tokcn(0], "END") = 0) (
if(npts==0)(

printf ("\n\nTHATS ALL FOLKS .. new file: %s\n", outputfilc);
exit (0);

) else (
writc_fcaturc_sct ();
npts = 0;

)
) else (

fcaturc_num = atoi (tokcn[0]);
if (fcaturc_num == 0) {

fprintf (stdcrr, "\nERROR .. got feature number of 0");
fprintf (stdcrr, "\n could be bad data\n");
exit (0);

)
)

)
// IF 2 TOKENS, GET THE EASTING, NORTHING FEATURE DATA
if (numjokens == 2) {

fcaturc^casting [npts] = atof (tokcn[0]);
fcaturc_northing[npts] = atof (tokcn[l]);
npts++;
if (npts > MAXJMUM_VERTICES_PER_FEATURE) (

fprintf (stdcrr, "\nERROR .. exceeded max number vcrticcsW);
exit (0);

)

) /* END OF MAIN */

/„,„„„ WRITE_FEATURE_SET • *«•"••«•
void writc„fcaturc_sct 0
{

int i;
char hcadcr_str [MAX_NUM_FEATURES][256];

strcpy (hcadcr_str[0],
strcpy (hcadcr_str[l],
strcpy (hcadcr_str[2],
strcpy (hcadcr„str[3],
strcpy (hcadcr_str[4],
strcpy (hcadcr_str[5],
strcpy (hcadcr_str[6],
strcpy (hcadcr_str[7],
strcpy (hcadcr_str[8].

"6W1W1W 16.\\Dual Highway");
"6\\2\\2\\ 8A\Highway");
•6\\3\\3\\ 8A\Road");
'2\\l\\l\\100A\Rivcr");
'3\\l\\l\\8A\Runway");
■3\\2\\2\\12A\Lcvcc");
"3\\3\\3\\lA\WaH");
"4\\l\\l\\0A\Fcncc");
"5\\l\\l\\0A\Lakc");

printf ("Writing fcaturc_num: %d with %d vertices", fcaturc_num, npts);

fprintfffout, "%d %s %10d\n",
fcaturc_num, hcadcr_str[filctypc_id], npts);

for (i=0; Knpts; i++)
fprintf (fout, "%10.2f%10.2An",

fcaturc_casting[i], fcaturc_northing[i]);

) /* END OF WR1TE_FEATURE_SET +/

/********* GETJTOKENS ********
int gct_tokcns (char *string,

char *scparator,
char *tokcn[],
int max_tokcn_chars,
int max_num_tokcns)

obtains tokens in string */
returns number of tokens found, 0 if unsuccessful */

*/
the following must be defined prior to calling */

token: pointer storage must be allocated */
separator: defines the chars that separate tokens*/

max_tokcn_chars: max num of chars allowed in a token */
max_num_tokcns: max num of tokens */

char*strptr="";
int len, num__tokcns = 0 ;

// MAKE SURE THE INPUT IS NOT A NULL STRING
if (Istrcmp (string, "")) return (0) ;

// PULL OFF THE TOKENS
while (strptr != NULL) {

if (numjokens = 0) {// GET FIRST TOKEN
strptr = strtok (string, separator);
if ((len = strlcn(strptr)) > max_tokcn_chars) {

fprintf (stdcrr, "\nERROR..gct_tokcns");
fprintf (stdcrr, 'An first token had %d chars", len);
fprintf (stdcrr, "\n max token chars:");
fprintf (stdcrr, "%d", max_tokcn_chars);
fprintf (stdcrr, "\n");
return (0);

} else {
strcpy (tokcn[nurn_tokcns++], strptr);
}

}elsc{ //OTHER TOKENS
strptr = strtok (NULL, separator);
if(strptr!=NULL){

if {num_tokcns > max_num_tokcns) {
fprintf (stdcrr, "\nERROR..gct_tokcns");
fprintf (stdcrr, 'An exceeded max num tokens:");
fprintf (stdcrr, "%d", max_num_tokcns);
fprintf (stdcrr, "\n");
return (0);

} else {
if ((len = strlcn(strptr)) > max_tokcn_chars) {

fprintf (stdcrr, "\nERROR .. gct_tokcns");
fprintf (stdcrr, "\n subs token had %d chars", len);
fprintf (stdcrr, "\n max token chars: ") ;
fprintf (stdcrr, "%d", max_tokcn_chars);
fprintf (stdcrr,'An1');

} else {
strcpy (token[num_tokcns++], strptr);

)
}

return (num_tokcns);

1 /* END OF GETJTOKENS */

26

Appendix F - FORTRAN Code

PROGRAM DFAD
C
CSUBROUTINES:TAPEIO_I,TAPEIO_C.C32T35,BIN2DEC_D,WOSUTM,
C BIN2DEC„A,INOUT,PTGEN,PLOT:PLOT/LIB,UTMWGS
C LINKED BY :link.dfad.9.com ,-.,,»,.,.»....,..„„,.,.,<.,.,»....................,*.....

R INTERGER MATRIX HOLDING THE FIC NUMBER OF THE ROADS
V BYTE MATRIC HOLDING THE SURFACE FEATURE HEIGHTS

COMMON/A/BUFF36(12,8),BUFFBITS(288)

INTEGERS SBUFF(9),ifilc

CHARACTER*80OUTFILE,infilc,filcnamc
byte null
charactcr*l anull,aspacc
BYTE BUFF36,BUFFB1TS
cquivalcncc(null,anull)

*** READ INPUT PARAMETERS *

aspacc =
null = 0

=>',S)") writc(6,"CEntcr in DFAD file to process (no cxt) =
rcad(5,'(a40)')f1'enamc
idx = indcx(filcnamc,aspacc)-l
infilc = filcnamc(l :idx)//\lvc7/anull
outfilc = filcnamc(l:idx)//\36bits'

print *,infilc
print *,outfilc

ifilc = iopcnrfinfilc)
OPEN (UNIT=3,FILE=OUTFILE,
• STATUS='UNKNOWN',
* FORM='FORMATTED')

lRCNT-1
ic = 0
itot = 0

100 CONTINUE
1COUNT=0

num = ircad (ifilc.SBUFF.36)
ircnt = ircnt + 1
itot = itot + num
if (mod(ircnt, 100).cq.0)thcn

print *,'Rcc,bytcs rcad.total bytes '.ircnt.num.itot
endif
if(num.cq.0)go to 999

c ifi;ic.gt.l0000)goto999

CALL C32T36(SBUFF)

doilp= 1.8
ic = ic + 1
writc(3,l 1 l)(bufibits(ij),ij=(36*(ilp-l)+l),(36*ilp)).ic

111 format(36il,5x,il5)
enddo

doij=l,9
sbuff(ij) = 0

enddo
doij=l,288

buffbits(ij) = 0
enddo

if(l.cq.l)gotolOO

999 CONTINUE
CLOSE (UNIT=3)
STOP
END

PROGRAM DFAD

♦**+*+++++*+**

C SUBROUTINES:BIN2DEC_D,
CLINKED BY :link.aries
Q **+* + + +*** + ** + *****#* + *** + + ♦+***** + *

c
C This program will read DFAD format off of tape and processes
C data into a .tvg format
C

COMMON/A« UFF36(12,8),BUFFBITS(288)
COMMON/D/ADATA(21600*30)

INTEGER'4 STATUS
INTEGERS IFEAID(1000,3),ISMCAR(14,3)
INTEGER*4XINTNUM,ICOUNT,WAGWACN,WAGWACC,WAGCELL
INTEGER*4 poricnt,plcngth,pwidth
INTEGER*4 ldircct.lwidth
INTEGER*4 astruct.arrce.aroof

CHARACTER*80 OUTFILE.INFILE.nicnamc
CHARACTER'l DSI(648),ACC(2700),SPACE,anull

BYTE BITS36(36),null
BYTE BUFF36.BUFFBITS.ADATA

DIMENSION X(8000),Y(8000)

EQUIVALENCE (STAT.STATUS)
equivalence (null.anull)

DATA SPACE/1 V

'""******• READ INPUT PARAMETERS**

writc(6,"('Entcr in file to process —> ',S)")
read(5,'(a40)')filenamc
idx = indcx(filcnamc,spacc)-l
infile = filcnamc(l:idx)//'.36bits'
outfilc = filcnamc(l:idx)//'.dfad'

♦♦••************ OPEN INPUT AND OUTPUT FILES **

OPEN (UNIT=2,FILE=INFILE.
* STATUS='UNKNOWN\
* FORM='FORMATTED')
OPEN (UNIT=9,FILE=OUTFILE,

* STATUS='unknown\
* FORM'^ORMATTEDO

doi=l,3
doj=l,1000

ifcaid(j,i) = 0
enddo

enddo

100 CONTINUE
IRCNT =1
ICOUNT = 0
NPTS = 0
IREJECT = 0
IPHTMAX = 0
IHEAD =0
IDX =1
ZONE =38

C
C- Process Manuscript header. Data Set Identification Record, Accuracy Record
C

c- Manuscript Data Set Header consists of *6* 36-bit words

icc = 1
doi=l,6

read(2,500)bits36
500 format(36il)

doj=l,36
buflbits(icc) = bits36(i)
ice = ice + 1

enddo
enddo
DO 120 J= 1,288

27

ADATA(J)=BUFFBITS(J)
120 CONTINUE

CALL BIN2DEC_D(1,6,XINTNUM)
PRINT *,XINTNUM

C IF XINTNUM = 63 —-> END OF ALL MANUSCRIPTS
1F(XINTNUM.EQ.63)G0 TO 900

IMAN=1MAN+1
WRITE(6,1500)IMAN

1500 FORMATflX,'MANUSCRIPT #',I5)

CALL BIN2DEC_D(10,3 .XINTNUM)
ILEV=XINTNUM

CALL B1N2DEC_D(I3,14,XINTNUM)
WAGWACN=XINTNUM

CALL BIN2DEC_D(27,5 .XINTNUM)
WAGWACC=XINTNUM

CALL BIN2DECJX32.5XINTNUM)
WAGCELL=XINTNUM

CALL BIN2DEC_D(37,36,XINTNUM)
ILAT10=XINTNUM

CALL BIN2DEC_D(73,36,XINTNUM)
ILON10=XINTNUM

ALON=ILON10/10./3600.
ALAT=lLAT10/10./3600.

c [F(ZONE.GT.30)ALON=-ALON
c WRITE(9,1605)ALAT,ALON
1605 F0RMAT(1X,'LAT,L0N\2F12.4)

CALL BIN2DEC_D(109,18.XINTNUM)
ILATMX=XINTNUM+1LAT10

CALL BIN2DEC_D(127,18,X1NTNUM)
ILONMX=X1NTNUM+ILON10

ALONMX=ILONMX/l 073600.
ALATMX=ILATM»10/3600.

c IF (ZONE.GT.30)ALONMX=-ALONMX

WRITE(6,1100)IMAN,1LEV,WAGWACN,WAGWACC,WAGCELL,ALON,ALAT,ALONM
X.

•ALATMX

c- DSI consists of 648 bytes = *144* 36-bit words

print *,'Rcading DSI'
DO 1=1,144

READ(2,500)BITS36
ENDDO

c WRITE(9,1200)DSI(4),(DSI(I),1=7,33),(DSI(I),1=60,64),
c *(DSI(I),I=65,79),(DS1(I),I=88,98),(DSI(I),I=127,141),
c •(DS1(I),I=145,149),(DSI(I),1=160,163)

c- ACC consists of 2700 bytes = *600* 36-bit words
c

print *,'Rcading ACC
DO 1=1,600

READ(2,500)BIT36
ENDDO

c WRITE(9,1300)(ACC(I),I=4,7),(ACC(I),I=12,15),(ACC(I).I=20,23),
c * (ACC(I),I=56,57)

1TOPLIM=21600

C-
C—

PROCESSING FEATURES

c WRITE(9,2900)
2900 FORMATf **** FEATURES BEING PROCESSED')

i36 = 0

300 CONTINUE
C
C- Read Feature data header - *2* 36-BIT WORDS

do i=l,288
buffbits(i) = 0

enddo

ick = l
icc= 1
doi=U

 Checking on checksum word-
if(i36.cq.600)thcn

rcad(2,500)bits36
writc(9,500)bits36

rcad(2,500)bits36
write(9,500)bits36

i36 = 0
writc(9,*)'*****chccksum**','*H

endif

READ(2,500)bits36
i36 = i36+l

c writc(9,*)i36,i36
doj=l,36

buffbits(icc) = bits36(j)
ice = ice + 1

enddo
enddo

DOJ=l,288
ADATA(J)=BUFFBITS(J)

enddo

c writc(6,500)(buffbits(ij),ij=l,72)

IHEAD=IHEAD+1

CALL BIN2DEC_D(IDX,14,XINTNUM)
IFAC=XINTNUM

CALL BIN2DEC_D(IDX+14,2,XINTNUM)
IFEATP=XINTNUM

c „,»,»,„„„»»»,»»»..*, TEST F0R END 0F MANUSCRIPT *

IFfIFEATP.EQ.3)GO TO 800
ITEST=IFEATP+1

c CALL BIN2DEC_D(IDX+16+1,10-1,XINTNUM)
CALL BIN2DEC_D(IDX+16,10,XINTNUM)
IPHT^XINTNUM^
IF (IPHT.GT.IPHTMAX)IPHTMAX=IPHT

CALL BIN2DEC_D(IDX+26,10,XINTNUM)
IFICN=XINTNUM

CALL BIN2DEC_D(IDX+36,5,XINTNUM)
ISMC=XINTNUM

- Point Feature Specifics -

if{ifcatp.eq.O)thcn
call bin2dcc_d(idx+36+5,6,xintnum)
porient = xintnum
call bin2dcc_d(idx+36+l l,7,xintnum)
plcngth = xintnum * 2
if (ificn.ge.230.and.ificn.Ic.239)plcngth = xintnum * 20
call bin2dcc_d(idx+36+l 8,7,xintnum)
pwidth = xintnum * 2
if (ificn.gc.230.and.ificn.Ic.239)pwidth = xintnum * 20
CALL BIN2DEC_D(IDX+61,11.X1NTNUM)
N=XINTNUM
WRITE(6,1400)IFAC,IFEATP,IPHT,IFICN,ISMC,N,

* poricnt,plcngth,pwidth
endif

if(ifcatp.cq.l)thcn
cal!bin2dec_d(idx+36+5,2,xintnum)
Idircct = xintnum
call bin2dcc_d(idx+36+7,7,xintnum)
Iwidth = xinmum * 2
cal!bin2dcc_d(idx+36+14,14,xintnum)
Iblank = xintnum
CALL BIN2DEC_D(IDX+59,13,XINTNUM)
N=XINTNUM
WRITE(6,140I)IFAC,IFEATP,IPHT,IFICN,ISMC,N,

* ldircct,lwidth
endif

if{ifcatp.cq.2)then
call bin2dcc_d(idx+36+5,4,xintnum)

28

astruct = xintnum
call bin2dcc_d(idx+36+9,4,xintnum)
atrcc = xintnum * 10
call bin2dcc_d(idx+36+13,4,xintnum)
aroof= xintnum * 10
call bin2dcc_d(idx+36+17,6,xintnum)
ablank = xintnum
CALL BIN2DEC_D(IDX+59,13.XINTNUM)
N=XINTNUM
WRITE(6,1402)1FAC.IFEATP.IPHT,1FICN,1SMC,N,

* astruct,atrcc,aroof
cndif

IF (IFICN.GT.O .AND. IFICN.LE.1000 .AND.
* ITEST.OT.O .AND. ITEST.LE.3)
* IFEAID(IFICN,1TEST)=IFEAID(IFICN,ITEST)+I
IF (ISMC.OT.O .AND. ISMC.LE.14 .AND.

* ITEST.GT.O .AND. ITEST.LE.3)
* 1SMCAR(ISMC,1TESTHSMCAR(ISMC,ITEST)+1
IF (ISMC.LE.O .OR. ISMC.GT.14)1MISS=IMISS+1

350 CONTINUE

c- Record of data points ntt of 36-bit words
c

idx = l
icc= 1

c print *,'Rcading ',n.' 36-bit words'
do i=l,n

--Checking on checksum word
if036.cq.600)thcn

rcad(2.500)bits36
writc(9,500)bits36

rcad(2.500)bits36
writc(9,500)bits36

i36 = 0
writc(9,*)'*****Chccksum*'

cndif

rcad(2.500)bits36
i36 = i36 + 1
writc(9,*)i36

doj=I,36
adata(icc) = bits36(j)
ice = ice + 1

enddo
enddo

NPTS=0
DOJ=l,N

NPTS=NPTS+1
CALL B1N2DEC_D(1DX+1,18-1 .XINTNUM)
Y(NPTS)=XlNTNUM/36000.

Y(NPTS)=XINTNUM/36000. + ALAT
if(y(npts).cq.alat.and.npts.gt.5)y(npts) = alatmx

CALLBIN2DEC_D(IDX+18+1.18-1,XINTNUM)
X(NPTS)-XINTNUM/36000.

X(NPTS)=XlNTNUM/36000. + ALON
if(x(npts).cq.alon.and.npts.gt.5)x(npts) = alonmx
IF (ZONE.GT.30)X(NPTS)=-XINTNUM/36000. + ALON

lDX=IDX + 36
ENDDO

writc(9,1604)ifcatp

if(ifcatp.cq.0)thcn
WRITE(9.1600)IFAC.IFICN,ISMC,IPHT.

* poricnt.plcngth.pwidth.NPTS
cndif
if (ifcalp.cq.l)thcn
WRITE(9,160I)IFAC,IFICN,ISMC.IPHT,

* Idircct.lwidlh.NPTS
cndif
if(ifcatp.cq.2)thcn

WRITE(9,1602)IFAC,IFICN,ISMC.IPHT,
* astruct,atrcc.aroof,NPTS
cndif

1600 format(8I5)
1601 format(7I5)
1602 format(8I5)
1604 format(I2)

DO MM=1,NPTS
WRITE(9,9876)X(MM),Y(MM)

9876 FORMAT(2F15.10)
ENDDO

■■ **********

800 CONTINUE
c WRITE(9,3400)(IHEAD-1),IREJECT,IPHTMAX
3400 FORMATf END OF MANUSCRIPT',/,

* ' TOTAL FACS =',19/,
* ' REJECTED FACS =',19/,
* 'MAXIMUM FEATURE HEIGHT =',I9/)

C— GET NEXT MANUSCRIPT

c idiff=600-i36+l
c print *,'Numbcr of 36 read = ',i36
c print *,'Rcading to end of record = '.idiff
c do i=l,idiff
c rcad(2,500)bits36
c enddo

c print *,'Rcading checksum word'
c read(2,500)bits36

C ALL MANUSCRIPTS PROCESSED
C

900 CONTINUE

DO 1=1,1000
IF (lFEAID(U).GT.O .OR. IFEAID(I,2).GT.O .OR.

* IFEAID(I,3).GT.0)
* WRITE(6,2700)I,(IFEAID(IJ),J=1,3)
enddo
WRITE(6,1700)(I,(ISMCAR(1,J),J=1,3),I=1,14),IMISS

CLOSE (UN1T=2)
CLOSE (UNIT=3)
close (unit=9)
STOP

1100 FORMATf//,' MANUSCRIPT NUMBER:',I5y,
* ' LEVEL NUMBER :',I5/,
* ' WAG(WAC) NUMBER :',IS/,
* ' WAGfWAC) CELL :',I5/,
* ' WAG CELL :',I5/,
* ' SOUTHWEST LON/LAT:'^F12.2y,
* ' NORTHEAST LON/LAT:',2F12.2/)

1200 FORMATf/,' DATA SET ID RECORD:',/,
* ' DATA CLASSIFICATION :',A1/,
* ' SECURITY HANDLING :',27A1,/,
* ' PRODUCT TYPE :',5A1/,
* ' MANUSCRIPT REF. NUMBER:',15A1/,
* ' DATA EDITION NUMBER :',2A1/,
* ' MATCH/MERGE VERSION :',A1/,
* ' MAINTENANCE DATEfYYMM):',4Al/,
* ' MATCH/MERGE DATE(YYMM):',4A1/,
* ' PRODUCT SPEC. STOCK NO: \9A1/,
* ' AMMENDMENT/CHANGENO:',2Al/,
* ' DATEfYYMM) :',4A1/,

' HORIZONTAL DATUM CODE:',5 Al/,
* ' COMPILATION DATEfYYMM):'.4A1/)

1300 FORMATC ACCURACY RECORD:'/,
*4X,4A1,' = ABSOLUTE HORIZONTAL ACCURACY (M)7,
•4X.4A1,' = POINT-TO-POINT HORIZONTAL ACCURACY (M)'/,
*4X,4A1,' = VERTICAL HEIGHTING ACCURACY (M)'/,
*4X,2A1,' = MULTIPLE ACCURACY OUTLINE FLAG'/,
*10X,' 00= NO ACCURACY SUBREGIONS'/,
*10X,'02-09 = NUMBER OF ACCURACY SUBREGIONS'///)

1400 FORMATf 1 x,' Point 7,
* 2X,'FAC=',I5,' Fca typc=',11,' HT=',I4,
* 2X,'FIC=',I4,' SMCC=',I2,' Num coor fca=\
* 2X,'Ori=',I2,' Lcn =',13,' Width = ',13)

1401 FORMAT(lx,' Linear- '/,

29

* 2X,'FAC=',I5,' Fca typc=',11,' HT=',I4,
* 2X,'FIC=',I4,' SMCC=',I2,' Num coor fca=',I5,
* 2X,'Dir=',Il,'Width=',l3)

1402 FORMAT(l x,' Area V,
* 2X,'FAC=',I5,'Fcatypc=',Il,'HT=',I4,
* 2X,'FIC=',I4,' SMCC=,,I2,' Num coor fca=',I5,
* 2X,'Strur=',I2,' Trcc=',I3,' Roof=',I3)

1700 FORMAT!' SOIL MATERIAL TYPE POINT LINE AREA7.
1X.I5,'
1X.15,'

1800
2700

METAL ',315,/,
PART METAL ',315,/,

1X.I5,' STONE ',3157,
1X.I5,' COMPOSITION ',315/,
1X.15,' EARTHWORKS ',315,/,
1X.I5,' WATER ',3157.
1X.I5,' DESERT ',315/,
1X.15,' ROCK ',315,/,
1X.15.' CONCRETE ',3157.
1X.15,' SOIL ',315,/,
1X.I5,' MARSH ',3157.
1X.I5,' TREES ',3157,
1X.I5,' SNOW ',3157.
1X.I5,' ASPHALT ',3157.

NO CODE ',15)
FORMATC NUMBER OF CELLS WITH VEG HTS=',I8)
FORMATC FEATURE NUMBER:POINT LINE AREA',415)

SUBROUTINE C32T36(BUFF)

C- This subroutine converts nine 32 bit words into
C- eight 36 bit words.
C-

COMMON IM BUFF36(12,8),BUFFB1TS(288)
BYTE BUFF36.BUFFB1TS
INTEGER'4 BUFF(9),AWORK,AOUT

aout = 0
c m=31

DO 101= 1,288
J = (l-l)/32 + l
K=I-1

8 IF(K.LT.32)GOT0 9
K = K - 32
GO TO 8

9 CONTINUE
AWORK = BUFF(J)

c asavc = buff(j)
KK = 31-K
CALL MVBITS(AWORK.KK,1,AOUT,0)
BUFFBITS(I) = AOUT

c call mvbits(asavc,m,l,aout,0)
c buttbits(i) = aout
c m=m-l
c if(m.cq.-l)m=31

aout = 0
10 CONTINUE
c writc(9,100)
c writc(9,10l)buff
c writc(9,110)
c writc(9,lll)buffbits
c writc(9,120)
c writc(9,121)buttbits
c 100 format(1 x,' buff- 1
cl 10 format(lx,' buffbits ■)
c 120 formatf 1 x,' BUTTbits ")
clOl format(9il6)
cl 11 format(36i2)
C121 format(32i2)

RETURN
END

SUBROUTINE B1N2DEC_D(I1,I2,XINTNUM)

C- Converts to decimal (DELTA REFERENCE)
C- 11= starting bit location

C- 12 = number of bits to be used
C- XINTNUM = NUMBER RETURNED
C

COMMON IN BUFF36(12,8),BUFFBITS(288),buttbits(288)
COMMON ID/ ADATA(21600*30)
BYTE BUFF36,BUFFBITS,ADATA,buttbits
INTEGER'4 Il,I2,I3,J,ICOUNT
INTEGERS XINTNUM

ICOUNT=-l
XINTNUM=0
IWORK=0
13=12+11-1

DOJ=I3,Il,-l
ICOUNT=ICOUNT+l
ITEMP=ADATA(J)
IF(1COUNT.LT.32)CALLMVBITS(ITEMP,0,1.XINTNUM,ICOUNT)

END DO

RETURN
END

30

Appendix G - PV-WAVE® Procedures

common hdr, dcg_to_rad, rad_to_dcg, alpha, ccc_sq, $
IIc_origin, rad„IIc_origin,xyz_origin_uvw, S
gsmtxOl, gsmlx02, gsmtx21, gsmtx22, $
rad_llc,uvw_conv,uvw_offsct,xyz__conv

pro makc_hdrbin,hfilc

ilun = 5
gctjun.ilun
opcnr,ilun,hfilc
f=fstat(ilun)
h = bytarr(f.sizc)
rcadu,ilun,h
point_lun,ilun,0
id9 = whcrc(h cq 9)
id32 = whcrc(h cq 32)
isz - strtrim(string(id32(0) - id9(2) -1),2)
nx = 0
ny = 0
fmtl - '(19x,i' + isz + ',Ix,i' + isz + \2x//)'
rcadf,ilun,ny,nx,format=fmtI
fmt2 = ,(22xIi4,lx,f8.5.4x,i4tlx,f8.5)'
rcadf,iIun,swJat_d,sw_lal_m,swJon_d,sw_lon_m,format=fmt2
rcadf,iIun,ncJat_d,ncJat_m,ncJon_d,ncJon_m,format=fmt2
fmt3='(30x,f8.6,lx,fS.6)
rcadf.il un.ro w_scl,col„scI,format=fmt3
frcc_lun,il u n

olun = 5
gctjun.olun
opcnw.olun.hfilc+'.ncw'
writcu.olun.nx.ny
write u,olun,sw_lat_d,sw_lat_m,sw_Ion_d,sw_Ion_m
write u,olun,nc_Jat_d,nc_Iat_m,ne_lon_d,nc_lon_m
writcu.olun,row_scl,coLscI
frccjun.olun

return
end

pro sct_valucs

@a rics.com

rad_llc_prigin = {,lat:O.OD, lon:O.OD, clv:O.OD }

dcg_to„rad = 1.74532925199D-2
rad_to_dcg = 57.2957795132D
alpha = 6378137.0D
ecc„sq = (2.0D - (1 .OD / 298.257223563D)) * (1 .OD / 298.257223563D)

rad_llc_origin.Iat = llc_origin.lat * dcg_to_rad
radJlc_origin.lon = llc„origin.lon * dcg_to_rad

sin_llc_origin_lat = sin(rad_llc_origin.lat)
cos_llc„origin_lat = cos(rad_llc_origin.lat)
sinJlc_origin_lon = sin(radJlc_origin.lon)
cos_llc_originJon = cos(rad_llc_origin.lon)

gsmtxOl = -sinJlc_origin_lat
gsmtx02 = cosJle_origin_lat
gsmtx21 = cosJlc_origin_lat
gsmtx22 = sin_llc_origin_lat

xyz_prigin_uvw = llc2uvw(llc_origin)

pro tcs2binary

rtyp = 0
nent = 0
xpt = 0.0
ypt = 0.0
cr = string("15b)
xmin = 999999.0
ymin = 9999999.0
xmax = -999999.0

ymax = -9999999.0
types = lonarr(3)
rfac = 0
rfic = 0
rsmc = 0
rhgt = 0
rori = 0
rlcn = 0
rwid = 0
rpts = 0
rdir = 0
rstruc = 0
rtree = 0
rroof- 0
manu = 1
lastfac = -l

fmtO = '(8i5)'&szO = 8*5+1
fmtl ='(7i5)'&szl =7*5+1
fmt2 = '(8i5),&sz2 = 8*5+1
fmtdata = '(113.3^33^13.3)'&szdata= 13*3+1

fnamc =''
print/Change TCS Text to Binary'
print,' • '
print/Enter in DFAD file to process - NO extension'
rcad.fnamc

opcnr,l,fnamc + '.tcs'
opcnw,2, fnamc + '.tcsbin'

fin = fstat(l)
fts = float(fm.sizc)

pent =0.0

writeu,2,xmin,ymin,xmax,ymax

while not(cof(l))do begin

rcadf, 1 ,rtyp,format='(i2)1

writcu,2,rtyp
pent = pent+ 2+1

case rtyp of

0: begin
rcadf,l,rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,rpts,format=fmtO
writcu,2,rfac,rfic,rsmc,rhgt.rori,rlcn,rwid,rpts
pent = pent + szO
end

1: begin
rcadf.l, rfac,rfic.rsmc,rhgt,rdir,rwid,rpts,format=fmtl
writcu,2,rfac,rfic,rsmc,rhgt,rdir,rwid,rpts
pent = pent + szl
end

2: begin
rcadf,l,rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts,format=fmt2
writcu,2,rfac,rfic,rsmc,rhgt,rstruc,rtrcc.rroof,rpts
pent = pent + sz2
end

endcase

txpts = fltarr(rpts)
typts = fltarr(rpts)
tzpts = fltarr(rpts)
zpt = 0.0

for i=0,rpts-l do begin
rcadf, 1 ,xpt,ypt,zpt,format=fmtdata
txpts(i) = xpt
typts(i) = ypt
tzpts(i) = zpt
pent = pent + szdata

end

types(rtyp) = typcs(rtyp)+(rtyp+l)

writcu,2,txpts,typts,tzpts

txmin = min(txpts,max=txmax)
tymin = min(typts,max=tymax)
if txmin It xmin then xmin = txmin
if txmax gt xmax then xmax = txmax
if tymax It ymin then ymin = tymin
if tymax gt ymax then ymax = tymax

if rfac It lastfac then manu=manu+l
lastfac = rfac

31

print,manu,rtyp,rfic,rpts,rhgt, S
((pcnt/fls)*100.0),cr,format='(S,5i5,2x,f6.2,',%'\a)'

print.'Numbcr of point, linear, area features'
print,typcs(0),typcs(l)/2,typcs(2)/3

point_lun,2,0
writcu,2,xmin,ymin.xmax,ymax

close,2

end

pro investigate

rtyp = 0
ncnt = 0
xpt = 0.0
ypt = 0.0
cr=string("15b)
xmin = 999999.0
ymin = 9999999.0
xmax = -999999.0
ymax = -9999999.0
types = lonarr(3)
rfac = 0
rfic = 0
rsmc = 0
rhgt - 0
rori = 0
rlcn = 0
rwid = 0
rpts = 0
rdir = 0
rstruc = 0
rtrcc = 0
rroof = 0
manu = 1
lastfac = -1
fnamc =''

print/Enter in DFAD file to investigate'
rcad,fnamc
opcnr.l,fnamc + '.dfadbin'
opcnw,2, fnamc + '.check'

fin=fstat(l)
fLs = float(fin.sizc)

pent = 0L
ekent = 0L
sbits = 750L

rcadu, 1 ,xmin,ymin,xmax,ymax

while not(cof(l))do begin

rcadu,l.rtyp
pent = pent + 2
sbits = sbits + 2
ekent = ekent + 2

case rtyp of

0: begin
rcadu.l, rfac,rfic,rsmc,rhgt,rori,rIcn,rwid,rpts
pent = pent+ (8*2)
end

1: begin
rcadu,l,rfac,rfic,rsmc,rhgt,rdir,rwid,rpts
pent = pent+ (7*2)
end

2: begin
rcadu,l,rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts
pent = pent+ (8*2)
end

endcase

txpts = fltarr(rpts)
typts = fltarr(rpts)
rcadu, l,txpts,typts

pent = pent + (rpts * 4 * 2)
sbits = sbits + rpts
ekent = ekent + rpts

if (ekent gt 600)thcn begin
ekent = 0
sbits = sbits+ 2

endif

if (rtyp cq 0)thcn goto.skip

diffx = txpts(0:*)-txpts(l:*)
diffy = typts(0: *)-typts(1: *)
idx = whcrc(diffx gt 1.0 or diffx It -1.0,xcnt)
idy = wherefdiffy gt 1.0 or diffy It -1.0,ycnt)

if (xent gt 0 or yent gt 0)thcn begin
printf,2,'FAC,x,y,pts ',rfac,xcnt,ycnt,rpts,sbits
printf,2,'idx,idy ',idx,idy
if (xent gt 0)thcn begin

printf,2,'Xdiff = ',diffx(idx)
printf,2,txpts(idx-l),typts(idx-l)
printf,2,'—'
printf,2,txpts(idx),typts(idx)
printf,2,'—'
printf,2,txpts(idx+l),typts(idx+l)

endif
if (yent gt 0)thcn printf,2,'Ydiff = ',diffy(idy)
printf,2,' '

endif

skip:

print,rfac,rtyp,rfic,rpts, $
((noat(pcnt)/fts)*100.0),cr,format='(S,4i5,2x,f6.2,"%",a)'

endwhile

print,pcnt
closc.l
closc,2

stop
end

pro arics2binary

rtyp = 0
ncnt = 0
xpt = 0.0
ypt = 0.0
cr=string("15b)
xmin = 999999.0
ymin = 9999999.0
xmax = -999999.0
ymax = -9999999.0
types = lonarr(3)
rfac = 0
rfic = 0
rsmc=:0
rhgt = 0
rori = 0
rlcn = 0
rwid = 0
rpts = 0
rdir = 0
rstruc = 0
rtrcc = 0
rroof = 0
manu = 1
lastfac = -1

fmtO ='(8i5)'& szO = 8*5+1
fmti='(7i5)'&szl= 7*5+1
fhu2 ='(8i5)'& sz2 = 8*5+1
fmtdata = '(fl5.10,fl5.10)'&szdata = 15*2+1

fnamc =''
print,'Change DFAD Text to Binary'
print,' '
print/Enter in DFAD file to process - NO extension'
rcad,fnamc

openr, 1 .fnamc + '.dfad'
opcnw,2, fnamc + '.dfadbin'

fin = fstat(l)
fts = float(fin.sizc)

32

pent = 0.0

writcu,2,xtnin,ymin,xmax,ymax

while not(cof(l))do begin

rcadf, 1 ,rtyp,format='(i2)'
writcu,2,rtyp
pent = pent + 2+1

case rtyp of

0: begin
rcadf, 1, rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,rpts,format=:fmtÖ
writcu,2,rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,rpts
pent = pent + sz0

end
1; begin

rcadf.l, rfac,rfic,rsmc,rhgt,rdir,rwid,ipts,fomiat=fmtl
writcu,2,rfac,rfic,rsmc,rhgt,rdir,rwid,rpts
pent = pent + szl
end

2; begin
rcadf.l, rfac,rfic,rsmc,rligt,rstrucIrtrce,rroof,rpts,format=fmt2
writcu,2,rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts
pent = pent + sz2
end

endcase

txpts = fltarr(rpts)
typts - fltarr(rpts)

for i=0,rpts-l do begin
rcadf.l ,xpt,ypt,format=fmtdata
txpts(i) = xpt
typts(i) = ypt
pent = pent + szdata

end

typcs(rtyp) = typcs(rtyp)+(rtyp+l)

write u,2,txpts,typts

txmin = min(txpts,max=txmax)
tymin = min(typts,max-tymax)
if txmin It xmin then xmin = txmin
if txmax gt xmax then xmax = txmax
if tymax It ymin then ymin = tymin
if tymax gt ymax then ymax = tymax

if rfac It lastfac then manu-manu+1
lastfac = rfac

print,rfac,rtyp,rfic,rpts,rhgt, S
((pcnt/fts)*100.0),cr,fomiat='(S,5i5,2x,f6.2,"%",a)'

print.'Numbcr of point, linear, area features'
print,typcs(0),typcs(l)/2,typcs(2)/3

point_lun,2,0
writcu,2,xmin,ymin,xmax,ymax

closc,2

end

SId:color_paIcttc.pro,vl.] 1991/05/22 16:53:19 jcffryExpS

pro cpal
;+
; NAME: COLOR_PALETTE
; PURPOSE: To display the numerical values associated with a color table

; Find interval to be used on the table
inr=l
inx=l
if (!d.n_colors gt 128) then inx=.5

; Save currently active window number
holdw = Id.window
holdp^ Ip.color

; Set up window
yboxes=fix(!d.n_colors/(8*int))
yvaluc=yboxcs*8*int
if (yvalue nc !d.n_co!ors) then yboxcs=yboxcs+l
ysize=yboxcs*40*inx
window,frcc=l,xsize=320,ysizc=ysizc

; Calculate when to switch printing the label in the opposite color
!p.color=!d.n_colors-l
change=y value * 3/4

; Loop through colors
x=0
y=0
for i=0,!d.n_eolors-l,int do begin

tv,rcplicatc(i,40,(40 *inx)),x,y
if (i gc change) then !p.color=0
xyouts,x+5,y+5,strtrim(string(i),2),/device
x=x+40
if (x ge 40*8) then begin

x=0
y=y+(40*inx)

endif
endfor

; Set back to previously active window
if holdw gc 0 then wsct,holdw
!p.color=ho!dp

return
end

pro showbinary

rtyp = 0
ncnt = 0
xpt = 0.0
ypt = 0.0
cr = string("15b)
xmin = 999999.0
ymin = 9999999.0
xmax = -999999.0
ymax = -9999999.0
types = Ionarr(3)
rfac = 0
rfic = 0
rsmc = 0
rhgt = 0
rori = 0
rlcn = 0
rwid = 0
rpts = 0
rdir = 0
rstruc = 0
rtrcc = 0
rroof = 0
manu = 1
lastfac = -1
flcsav=intarr(3,1000)
ficcol = [0,0,2,6,0,7,16,23,8,3,30, 8,15,4,27,3]

fnamc =''
print,'Entcr in DFAD file to view'
rcad.fnamc
openr, 1 ,fnamc + '.dfadbin'

cfac = 0
print,'Entcr FAC to view or zero for all'
rcad.cfac

pent = 1

rcadu,l,xmin,ymin,xmax,ymax

dcvicc,pscudo_color=8
window,0,xsizc=900,ysizc=900

tck_color
plot,[xmin,xmin,xmax,xmax,xmin],[ymin,ymax,ymax,ymin,vmin],xstylc=l,ystylc=l,$

color=0,tickformat='(f6.3)',background=l

while not(coftl))do begin

readu.l.rtyp

case rtyp of

33

0: begin
rcadu.l, rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,rpts
end

1: begin
rcadu,l, rfac,rfic,rsrnc,rhgt,rdir,rwid,rpts
end

2: begin
rcadu,l,rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts
end

endcasc

txpts = fltarr(rpls)
typts = fltarr(rpts)
rcadu,l,txpts,typts

if rfac nc cfac and cfac nc 0 then goto.skippcr

ficidx = rfic/100
if(ficidxcq9)thcnficidx=10 + ((rfic/10Hrfic/100*10))

if rfac cq 1 then goto.skippcr
wid = rwid/2
len = rlcn/2

if rtyp cq 0 and rfic nc 420 then oplot,txpts,typts,color==ficcol(ficidx),psym=l ,symsizc=0.5
if rtyp cq 0 and rfic gt 400 and rfic It 500 then begin

print.rwid.rlcn
oplot,[txpts-wid,txpts-wid,txpts+wid,txpts-Kvid,txpt5-wid],$

[typts-lcn,typts-Hcn,typts+lcn,typts-lcn,typts-lcn], S
color=ficcol(ficidx)
stop

endif
if rtyp cq 1 thcnoplot,txpts,typts,color=ficcol(ficidx)
if rtyp cq 2 then polyfill,txpts,typts,color=ficcol(ficidx)
ficsav(rtyp,rfic) = ficsav(rtyp,rfic) + 1

if rfac cq cfac and cfac nc 0 then begin
stop

endif

pent = pent + 1

if rfac It lastfac then begin
manu-manu+1
print.manu

endif
lastfac = rfac

skipper:
end

print.pcnt
close, 1

opcnw,2,fnamc + '.fie'

printf,2,format='(lx,"FIC",5x,"Point",9x,"Lincar",8x,"Arca")'
printf,2.format='(9x," M,9x," ",8x,"—")'
formfic = "(lx,i3,5x,i4.10x,i4,10x,i4)"
for i=100.999 do begin

ifficsav(0,i)nc 0orficsav(l,i)ne0or ficsav(2,i) nc 0 then begin
prinlf.2,i,ficsav(0,i),ficsav(l,i),ficsav(2,i),format=formfic

endif
end
sumO = long(total(ficsav(0,*)))
suml = long(total(ficsav(l,*)))
sum2 = Iong(total(ficsav(2,*)))
gtot = sum0+suml+sum2
printf,2,format='(lx,"Totals",2x," ",9x," ",8x,"—")'
printf,2,sum0,suml,sum2,forrnat='(9x,i5,9x,i5,9x,i5)'
printf,2,gtot,format='(/, "Grand total = ",i6)'
closed

end

function llc2uvw,llc

@arics.com

lon_offsct - 0.0D
cosjat = 0.0D
sinjat = 0.0D
re = 0.0D

; Decimal degrees to radians

radjlc.lat = llc.lat * dcg_to_rad
radjle.lon = llc.lon * dcg_to_rad

; Convert geodetic to JointStars-gcoccntric

lon_offsct = radjle.lon - rad_llc_origin.lon;
cos_lat = cos(radjlc.lat);
sinjat = sin(radjlc.lat);

re = alpha / sqrt(1.0 - (ccc_sq * sinjat * sinjat))

uvw_conv.x = (re + llc.clv) * cosjat * cos(Ion_offsct)
uvw_conv.y = (re + llc.clv) * cosjat * sin(lon_offsct)
uvw_conv.z = ((re * (1.0 - ccc_sq)) + llc.clv) * sinjat

rcturn,uvw_conv

end

function uvw2tcs,uvw

convert uvw to tcs

uvw_offsct.x = uvw.x - xyz_origin_uvw.x
uvw_offsct.z = uvw.z - xyz_origin_uvw.z

xyz_conv.x = uvw.y
xyz_conv.y = gsmtxOl * uvw_offsct.x + gsmtx21 * uvw„offsct.z
xyz_conv.z = gsmtx02 * uvw_offsct.x + gsmtx22 * uvw_offsct.z

return,xyz_conv

end

pro find_dfad_clcv

@arics.com
llc_origin = {,lat:0.0D, lon:0.0D, clv:0.0D }
lie = {,lat:0.0D, lon:0.0D, clv:0.0D }
xyz = {, x:0.0D, y:0.0D, z:0.0D }
radjlc = {,Iat:0.0D, lon:0.0D, clv:0.0D}
uvw_conv = {,x:0.0D, y:0.0D, z:0.0D}
uvw_offsct = {,x:0.OD, y:0.0D, z:0.0D}
xyz_conv = {,x:0.0D, y:0.0D,z:0.0D}

anamc =''

print,'Enter in Aries file to find elevations for - NO extensions'
rcad,anamc

openr, 1 .anamc+'.dfad'
opcnw,4,anamc+'.tcs'

olat = 29.000000D & olon = 46.166666D & oclv = 0.0D

print,'Entcr in Origin of datasct (Lat/Lon/Elcv)'
llc_origin.lat = oIat
llc_.origin.lon = olon
llc_origin.clv = oclv

;—-Initialize variables for LatLon -> TCS convcrsion-
sct_valucs

edir =''
print,'Entcr in associated elevation directory'
rcad,edir
fnamc =''
print.'Entcr in datafile name'
re ad,fnamc

hnamc = cdir+Yhdr'
makc_hdrbin,hnamc

opcnr,2,cdir+'/'+fnamc
opcnr,3 ,edir+7hdr.ncw'

print,'Reading header info '
xd = 0 & yd = 0
nx = 0 & ny = 0
swjat_d=0.0 & swjat_m=0.0 & swjon_d=0.0 & swJon_m = 0.0

34

nc_lat_d=0.0 & ncjat_m=0.0 & nc_lon_d=0.0 & ncJon_m = 0.0
row_scl=0.0 & col_scl=0.0

rcadu,3,nx,ny
rcadu,3,swJat„d,sw_lat_m,sw_lon_d.sw_lon_m, S

ncJat_d,nc_lat_m,nc_lon_d,nc_lon_m, S
row_scl,col_scl

sw_lon_scc = (sw_lon_d*3 600.0 + 3w_lon_m*60.0)
sw_Iai_scc = (swjat„d*3600.0 + sw_Iat_m*60.0)
ncJon_scc = (nc_lon_d*3600.0 + nc_lon_m*60.0)
nc_lat_scc = (nc_lat_d*3600.0 + nc_lat_m*60.0)

print,'Crcating elevation array NX by NY ',nx,ny
z = iniarr(nx,ny)
print,'Rcading elevation array '
rcadu,2,z

; Processing Text file '
rtyp = 0 & ncnt = 0 & xpt = 0.0 & ypt = 0.0
cr = string("15b)
xmin = 999999.0 & ymin = xmin
xmax = -999999.0 & ymax = xmax
types = lonarr(3)
rfac = 0 & rfic = 0 & rsmc = 0 & rhgt = 0 & rori = 0 & rlcn = 0
rwid = 0 & rpts = 0 & rdir = 0 & rstruc = 0 & rtrcc = 0 & rroof = 0
manu = 1 & lastfac = -1 & pent = 0.0

fmtO = '(8i5)' & szO = 8*5+1
fmtl = '(7i5)'&szl =7*5+1
fmt2 = '(8i5)' & sz2 = 8*5+1
fmtdata = '(fl 5.10,f)5.10)'&szdata= 15*2+1
fmtout = ,(fl3.3(fI3.3,f13.3)'
fm = fsiat(l)
fls = float(fin.sizc)

while not(cof(l))do begin

rcadf ,1 ,rtyp,format='{i2)'
printfArtyp/ormat^'^)'
pcnt = pent + 2+1

case rtyp of

0: begin
rcadf,1, rfac,rfic,rsrnc,rhgt,rori,rlcn,rwid,rpti;,forrnat==:frntO
printf,4,rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,rpts,format=fmt0
pent = pent + szO

end
1: begin

rcadf ,1, rfac,rfic,rsmc,rhgt,rdir,rwid,rpts,format=fmtl
print f,4,rfac,rfic,rsmc,rhgt,rdir,rwid,rpts,forma t=fmtl
pent = pent + szl
end

2: begin
rcadf ,1, rfac.rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts,formar=fmt2
printf,4,rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts,fonTiat=fmt2
pent = pent + sz2
end

endcase

txpts = fltarr(rpts)
typts = fltarrfrpts)
tzpts = fltarr(rpts)

for i=0,rpts-l do begin
rcadf, 1 ,xpt,ypt,format=fmtdata
txpts(i) = xpt
typts (i) = ypt
xidx = fix(((xpt*3600.0) - sw_lon_scc) / coLscl)
yidx = fix(((ypt*3600.0) - sw_lat_scc) / row_scl)

if (xpt*3600.0) It sw_lon_scc or S
(ypt*3600.0) It sw_lat_scc or $
(xpt*3600.0) gt nc_lon_scc or S
(ypt*3600.0) gt nc_lat„scc then begin

tzpts(i) = z(0,0)
endif else begin

tzpts(i) =z(xidx,yidx)
cndclsc
pent = pent + szdata

end

for i=0,rpts-l do begin
llc.lon = txpts(i)

llc.lat = typts(i)
llc.clv = tzpts(i)

xyz = Ilc2tcs(llc)
txpts(i) = xyz.x
typts(i) = xyz.y
tzpts(i) = xyz.z

end

for i=0,rpts-l do begin
xpt = txpts(i)
ypt = typts (i)
zpt = tzpts(i)
printf,4,xpt, ypt,zpt,format=fm tout

end

print,rtyp,rfic,rots,rhgt,((pcnt'fts)*100.0),cr, $
format='(S,4i5,2x,f6.2,"%",a)'

print,
close, 1
closc,2
closc,3
closc,4

end

function Ilc2tcs,llc

@ari cs.com

Convert geodetic to JointStars-gcoccntric (uvw)

uvw= llc2uvw(llc)

convert JointStars-gcoccntric(uvw) to tcs

xyz = uvw2tcs(uvw)

return,xyz

end

pro showtcs

rtyp = 0
ncnt = 0
xpt = 0.0
ypt = 0.0
cr = string("15b)
xmin = 999999.0
ymin = 9999999.0
xmax = -999999.0
ymax = -9999999.0
types = lonarr(3)
rfac = 0
rfic = 0
rsmc = 0
rhgt = 0
rori = 0
rlcn = 0
rwid = 0
rpts = 0
rdir=0
rstruc = 0
rtrcc = 0
rroof = 0
manu = 1
lastfac = -1
ficsav=intarr(3,1000)
ficcol = [0,0,2,6,6,7,16,23,8.3,30, 8,15,4,27, 3]

fhamc = ''
print/Entcr in TCS file to view'
rcad.fnamc
opcnr,l ,fnamc + '.tcsbin'

cfac = 0

pent = 1

35

unzoom:

rcadu,l,xmin,ymin,xmax,ymax
zxmin = xmin
zxmax = xmax
zymin = ymin
zymax = ymax

zoom it;

dcvicc.pscudo_color=8
window,0,xsizc=900,ysizc=900

tck_color
plot,[zxmin,zxmin,zxmax,zxmax,zxmin],S

[zymin,zymax,zymax,zymin,zymin],$
xstylc=l, ystylc-1, color=0, tickformat='(f6.3)', background^

print, zxmin,zymin,zxmax,zymax
print,'—
while not(cofO))do begin

rcadu,l,rtyp

case rtyp of

0: begin
rcadu,l,rfac,rfic,rsmc1rhgt,rori,rlcn,rwid,rpts
end

1: begin
rcadu,l, rfac,rfic,rsmc,rhgt,rdir,rwid,rpts
end

2: begin
rcadu.l, rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts
end

endcase

txpts = fltarr(rpts)
typts = fltarr(rpts)
tzpts = fltarr(rpts)
rcadu, 1 ,txpts,typts,tzpts

txmin = min(txpts,max=txmax)
tymin = min(typts,max=tymax)
if txmin It zxminorS

tymin It zymin or S
txmax gt zxmax or S
tymax gt zymax then goto,skipper

wid = rwid/2
!cn = rlcn/2

if rfac nc cfac and cfac nc 0 then goto.skippcr

ficidx = rfic/100
if (ficidx cq 9)thcn ficidx = 10 + ((rfic/IO)-(rfic/100*10))

if rfac cq 1 then goto.skippcr

oplot,txpts,typts,color=ficcol(ficidx),psym=l,symsizc=0.5
ifrtypcqOthcn begin

oplot,[txpts-wid,txpts-wid,txpts+wid,txpts+wid,txpts-wid],S
[typts-lcn,typts+lcn,typts+lcn,typts-len,typts-Ien], S
color=ficcoI(ficidx)

endif
if rtyp cq 1 then op!ot,txpts,typts,color=ficcol(ficidx)
if rtyp cq 2 thcnpolyfill,txpts,typts,color=ficcol(ficidx)
ficsav(rtyp,rfic) = ficsav(rtyp,rfic) + 1
if rfac cq cfac and cfac nc 0 then begin

stop
endif

pent = pent + 1

skipper:
end

print.pcnt

ans = "
print,'Do you want to zoom ? y/n/all'
rcad.ans
if ans cq 'n' then goto.thccnd
if ans cq 'all' then begin

point_lun,1,0

goto.unzoom
endif

print/Select first point'
cursor,xptl,yptl/data
print,xptl,ypt1
wait,l
print.'Sclcct second point'
cursor,xpt2,ypt2 /data
print,xpt2,ypt2
zxmin = min([xptl ,xpt2])
zymin = min([yptl ,ypt2])
zxmax = max([xptl,xpt2])
zymax = max([yptl,ypt2])

point_lun,l,0
rcadu,l,xmin,ymin,xmax,ymax
goto.zoomit

openw,2,fnamc + '.fie'

printf,2,format='(lx,"FIC",5x,"Point",9x,"Lincar",8x,"Arca")'
printf,2,format='(9x,"-—",9x," ",8x,"—")'
formfic = "(lx,i3,5x,i4,10x,i4,10x,i4)"
for i=100,999 do begin

if ficsav(0,i) nc 0 or ficsav(l ,i) nc 0 or ficsav(2,i) nc 0 then begin
printf,2,i,ficsav(0,i),ficsav(l,i),ficsav(2,i),fonnar=formfic

endif
end
sumO = long(total(ficsav(0,*)))
suml = long(total(ficsav(I ,*)))
sum2 = long(total(ficsav(2,*)))
gtot = sum0+suml+sum2
priritf2,format='(lx,'Totals",2x," ",9x," ",8x,"—")'
printf,2,sum0,suml,sum2,format='(9x,i5,9x,i5,9x,i5)'
printf,2,gtot,format='(/,"Grand total = ",i6)'
close,2

end

pro dfad2tcs

@arics.com
Hc„origin = {,lat:0.0D, lon:0.0D, clv:0.0D }
He = {,lat:0.0D, Ion:0.0D, clviO.OD }
xyz = {, x:0.0D, y:0.0D, z:0.0D }
radjle = {,lat:0.0D, lon:0.0D, elv:0.0D}
uvw_conv ={,x:0.0D,y:0.OD, z:0.0D}
uvw_offsct = {,x:O.0D, y:0.0D, z:0.0D}
xyz_conv = {,x:0.0D, y:0.0D, z:0.0D}

anamc =''

print.'Entcr in Aries file to find elevations for - NO extensions'
read,anamc

openr, 1 ,anamc+'.dfad'
openw,4,anamc+'.tcs'

olat = 29.000000D & olon = 46.166666D & oclv = 0.OD

print.'Entcr in Origin of datasct (Lat/Lon/Elcv)'

llc.origin.lat^olat
llc_origin.lon = olon
llc_origin.elv = oclv

;—Initialize variables for LatLon -> TCS convcrsion--
sct_valucs

cdir =''
print,'Entcr in associated elevation directory'
rcad,cdir
fnamc =''
print/Enter in datafile name'
rcad.fhamc

hnamc = edir+'/hdr'
makc_hdrbin,hnamc

openr^.cdir+'/'+fname
opcnr,3 ,cdir+'/hdr.ncw'

36

print.'Rcading header info '
xd = 0 & yd = 0
nx = 0 & ny = 0
sw_lat_d=0.0 & swjat_m=0.0 & sw_lon_d=0.0 & swJon_m = 0.0
nc_lat_d=0.0 & nc_lat_m=0.0 & nc_lon_d=0.0 & nc_1on_m = 0.0
row_scl=0.0 & coLscI=0.0

rcadu,3,nx,ny
rcadu,3,sw_lat_d,swJat_m,swJon_d,sw_lon_m, S

nc_Iat_d,ncJat_m,nc_lon_d,nc_lon_m, S
row_scl,col_scl

sw_lon_scc = (swjon_d*3600.0 + sw_lon_m*60.0)
sw_lat_scc = (sw_lat_d*3600.0 + sw_lat_m*60.0)
nc_lon_scc = (nc_lon„d*3 600.0 + nc_lon_m*60.0)
nc_lat_scc = (ncjat_d*3 600.0 + nc_lat_m*60.0)

print.'Crcating elevation array NX by NY \nx,ny
z = intarr(nx,ny)

print.'Rcading elevation array...
rcadu,2,z

 Processing Text file—
rtyp = 0 & ncnt = 0 & xpt = 0.0 & ypt = 0.0
cr = string("15b)
xmin = 999999.0 & ymin = xmin
xmax = -999999.0 & ymax = xmax
types = lonarr(3)
rfac = 0 & rfic = 0 & rsmc = 0 & rhgt = 0 & rori = 0 & rlcn = 0
rwid = 0 & rpts = 0 & rdir = 0 & rstruc = 0 & rtrcc = 0 & rroof = 0
manu = 1 & lastfac = -1 & pent = 0.0

fmtO ='(8i5)'& szO = 8*5+1
fmtl = '(7i5)'&szl= 7*5+1
fmt2 = '(8i5)' & sz2 = 8*5+1
imtdata = '(fl5.10,f15.10)'&szdata = 15*2+1
fmtout ='(n3.3,n3.3,n3.3)'
fm = fstat(l)
fts = float(fin.sizc)

while not(cof(l))do begin

rcadf ,1 ,rtyp,forniat='(i2)'
print f,4,rtyp, format-(i2)'
pent = pent + 2+1

case rtyp of

0: begin
rcadf,1, rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,mts,format=fmt0
printf,4,rfac,rfic,rsmc,rhgt,rori,rlen,rvvid,rpts,format=fmt0
pent = pent + szO
end

1: begin
rcadf, l,rfac,rfic,rsmc,rhgt,rdir,nvid,rpts,format=fmtl
print f,4,rfac,rfic,rsmc,rhgt,rdir,rwid,rpts,format=fmtl
pent = pcnt + szl
end

2: begin
rcadf, 1, rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpts,format=fmt2
printf,4,rfac,rfic,rsmc,rligt,rstruc,rtrcc,rroof,rpts,formar=fmt2
pent = pent + sz2
end

endcase

txpts = fltarr(rpts)
typts = fltarr(rpts)
tzpts = fltarr(rpts)

fori=0,rpts-l do begin
rcadf.l ,xpt,ypt,formar=fmtdata
txpts(i) = xpt
typts(i) = ypt
xidx = fix(((xpt*3600.0) - sw_lon_scc) / coLscl)
yidx = fix(((ypt*3600.0) - sw_lat_scc) / row_scl)

if (xpt*3600.0) It sw_lon_scc or $
(ypt*3600.0) It sw_lat_scc or S
(xpt*3600.0) gt nc_lon_scc or S
(ypt*3600.0) gt nc_lat_scc then begin

tzpts(i) «= z(0,0)
endif else begin

tzpts(i) = z(xidx,yidx)
cndclsc
pent = pent + szdata

for i=0,rpts-I do begin
lIc.Ion = txpts(i)
llc.lat = typts(i)
llc.clv = tzpts(i)

xyz = llc2tcs(llc)
txpts(i) = xyz.x
typts(i) = xyz.y
tzpts(i) = xyz.z

end

fori=0,rpts-l do begin
xpt = txpts(i)
ypt = typts(i)
zpt = tzpts(i)
printf,4,xpt,ypt,zpt,format=fmtout

end

print,rtyp,rfic,rpts,rhgt,((pcnt/fts)* 100.0),cr, S
format='(S,4i5,2x,f6.2,"%",a)'

print,
close, 1
closc,2
closc,3
closc,4

end

pro showall

rtyp = 0
ncnt = 0
xpt = 0.0
ypt = 0.0
cr = string("15b)
xmin = 999999.0
ymin = 9999999.0
xmax = -999999.0
ymax = -9999999.0
types = lonarr(3)
rfac = 0
rfic=0
rsmc = 0
rhgt = 0
rori = 0
rlcn = 0
rwid = 0
rpts = 0
rdir = 0
rstruc = 0
rtrcc = 0
rroof = 0
manu = 1
lastfac = -1
ficsav = intarr(3,1000)
ficcol = [0,0,2,6,6,7,16,23,8,3,30,8,15,4,27,3]

fnamc = ['aricsr,'arics2','arics3','arics4','arics5']

dcvicc,pscudo_coIor=8
window, 0,xsizc=900,ysizc=900

xmin = 43.000
ymin = 26.000
xmax = 49.000
ymax = 32.000

tek_color
plot,[xmin,xmin,xmax,xmax,xmin],[ymin,ymax,ymax,ymin,ymin],xstylc=l,ystylc=l,S

color=0,tickformat='(f6.3)',backgrounds

for afilc = 0,4 do begin

opcnr,l,fhamc(afile) + '.dfadbin'

cfac = 0

pent = 1

rcadu,l,xmin,ymin,xmax,ymax
print, fhamc(afi I c),xmin,ymin,xmax, ymax

37

while not(cof(l))do begin

rcadu.l.rtyp

case rtyp of

0: begin
rcadu,l,rfac,rfic,rsmc,rhgt,rori,rlcn,rwid,rpts
end

1: begin
rcadu,l,rfac,rfLC,rsmc,rhgt,rdir,r\vid,rpts

end
2: begin

rcadu.l, rfac,rfic,rsmc,rhgt,rstruc,rtrcc,rroof,rpt5
end

endcase

txpts = fltarr(rpts)
typts = fitarr(rpls)
rcadu.l.txpts.typts

if rfac nc cfac and cfac nc 0 then goto,skippcr

ficidx = rfic/100
if (ficidx cq 9)thcn ficidx = 10 + ((rfic/10)-(rfic/100*I0))

if rfac cq 1 then goto,skippcr

if rtyp cq 0 then oplot,txpts,typts,color=ficcol(ficidx),psym==l,syrnsizc=0.5
if rtyp cq 1 then opIot,txpts,typts,color=ficcol (ficidx)
if rtyp cq 2 then polyfiH,txpts,typts,co1or=ficcol(ficidx)
ficsav(rtyp,rfic) = ficsav(rtyp,rfic) + 1

if rfac cq cfac and cfac nc 0 then begin
stop

endif

pent = pent + 1

lastfac = rfac

skipper:
end

close, 1

olun = 0
gcMun,olun
opcnw,olun,fnamc(afilc)+'.fic'

printf,olun,format='(lx,"FIC",5x,"Point",9x,"Lincar",8x,"Arca")'
printf,olun,format='(9x," ",9x," ",8x,"—-")'
formfic = "(lx,i3,5x,i4,10x,i4,10x,i4)"
for i=100,999 do begin

if ficsav(O.i) nc 0 or ficsav(l ,i) nc 0 or ficsav(2,i) nc 0 then begin
printf,olun,i,ficsav(0,i),ficsav(l,i),ficsav(2,i),forniat=fomific

endif
end
sumO = Iong(total{ficsav(0,*)))
suml = long(total(ficsav(l,*»)
sum2 = long(total(ficsav(2,*)))
gtot = sum0+suml+sum2
printf,olun,format='(lx,"Tota!s",2x," ",9x," ",8x,"-—")'
printf,olun,sum0,suml,sum2,format='(9x,i5,9x,i5,9x,i5)'
printf,olun,gtot,format='(A"Grand total = ",i6)'
frcc_lun,olun
ficsavf*,*)= 0

endfor

38

Appendix H - Glossary

2-D
3-D
ADS
AFATDS
AML
API
ARC/INFO®

ArcView®

ARIES

AUTOGRAPHICS®

C

C4ISR

CD-ROM
DFAD
DIS
DT&E
DTED
ETE
Excel
FID
FORTRAN

GIS
GUI
ICD
ID
IEEE
ERDAS IMAGINE®
JADS
Janus
Joint STARS
JTF
LGSM
LMTDS
MIL-PRF
MIL-STD

2-dimensional
3-dimensional
advanced distributed simulation
Advanced Field Artillery Tactical Data System
ARC/INFO® Macro Language
application programmer interface
a workstation GIS software package by Environmental Systems Research-
Institute
a desktop GIS software package by Environmental Systems Research
Institute
Advanced Radar Imaging Emulation System developed by Lockheed
Martin Tactical Defense Systems, Litchfield Park, Arizona
a GIS software package by Lockheed Martin Tactical Defense Systems,
Akron, Ohio
a coding system for programming scientific problems to be solved by a
computer
command, control, communications, computers, intelligence, surveillance
and reconnaissance
compact disk that can hold a large quantity of computer data
digital feature analysis data
distributed interactive simulation
developmental test and evaluation
digital terrain elevation data
End-To-End
a spreadsheet application by Microsoft®
feature identification
a coding system for programming scientific problems to be solved by a
computer
geographic information system
graphical user interface
interface control document
identification
Institute of Electrical and Electronics Engineers
a geographic imaging suite by ERDAS®, Incorporated
Joint Advanced Distributed Simulation, Albuquerque, New Mexico
interactive, computer-based simulation of combat operations
Joint Surveillance Target Attack Radar System
joint test force or Joint Test Force, Albuquerque, New Mexico
light ground station module
Lockheed Martin Tactical Defense Systems
military performance specification
military standard

39

MTI
NIMA
OT&E
PDU
PV-WAVE®
R2V™

RPS

RWS
SAR
SEDRIS
STARS
SWA
T&E
TAFSM
TCS
TEXCOM
TRAC
TRADOC
UTM
VPF
VSTARS
WSMR
WWW

moving target indicator
National Imagery and Mapping Agency
operational test and evaluation
protocol data unit
a visual data analysis software package by Visual Numerics, Incorporated
a raster to vector conversion software package by Able Software
Company
radar processor simulation developed by Northrop Grumman, Melbourne,
Florida
remote workstation
synthetic aperture radar
Synthetic Environment Data Representation & Interchange Specification
surveillance target attack radar system
Southwest Asia
test and evaluation
Tactical Army Fire Support Model
Topocentric Coordinate System
U.S. Army Test and Experimentation Command
U.S. Army Training and Doctrine Command (TRADOC) Analysis Center
U.S. Army Training and Doctrine Command
Universal Transverse Mercator
Vector Product Format
Virtual Surveillance Target Attack Radar System
White Sands Missile Range, New Mexico
world wide web

40

Units of Measure

deg or ° degree
GB gigabyte
MB megabyte

41

